




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆云南省紅河哈尼族彝族自治州市級名校中考試題猜想數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,數軸A、B上兩點分別對應實數a、b,則下列結論正確的是()A.a+b>0 B.ab>0 C.1a+2.一次函數y=ax+b與反比例函數y=在同一平面直角坐標系中的圖象如左圖所示,則二次函數y=ax2+bx+c的圖象可能是()A. B. C. D.3.二次函數的最大值為()A.3 B.4C.5 D.64.用配方法解方程時,可將方程變形為()A. B. C. D.5.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規作圖的痕跡,則下列結論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC6.下列計算正確的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6aD.(2a﹣b)2=4a2﹣b27.如圖,在中,,將繞點逆時針旋轉,使點落在線段上的點處,點落在點處,則兩點間的距離為()A. B. C. D.8.魏晉時期的數學家劉徽首創割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內接正多邊形,當正多邊形的邊數不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續努力,當正多邊形的邊數增加24576時,得到了精確到小數點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據“割圓術”,由圓內接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π9.下列運算正確的是()A.2+a=3 B.=C. D.=10.如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經過△ABC區域(包括邊界),則a的取值范圍是()A.
或
B.
或
C.
或D.二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:x2y-4y3=________.12.分式有意義時,x的取值范圍是_____.13.如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉30°后得到正方形A′B′C′D′,則圖中陰影部分面積為_______平方單位.14.計算的結果等于_____.15.分式方程的解為__________.16.一個樣本為1,3,2,2,a,b,c,已知這個樣本的眾數為3,平均數為2,則這組數據的中位數為______.17.小明為了統計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)330三、解答題(共7小題,滿分69分)18.(10分)如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.求證:△BDE≌△BCE;試判斷四邊形ABED的形狀,并說明理由.19.(5分)解方程組20.(8分)某校團委為研究該校學生的課余活動情況,采取抽樣調查的方法,從閱讀、運動、娛樂、其他等四個方面調查了若干名學生的興趣愛好,并將調查的結果繪制了如下的兩幅不完整的統計圖,請你根據圖中提供的信息解答下列各題:(1)在這次研究中,一共調查了多少名學生?(2)“其他”在扇形統計圖中所占的圓心角是多少度?(3)補全頻數分布直方圖;(4)該校共有3200名學生,請你估計一下全校大約有多少學生課余愛好是閱讀.21.(10分)對幾何命題進行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命題會正確嗎?(1)請判斷下列命題的真假,并在相應命題后面的括號內填上“真”或“假”.①等腰三角形兩腰上的中線相等;②等腰三角形兩底角的角平分線相等;③有兩條角平分線相等的三角形是等腰三角形;(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進行證明,如果不是,請舉出反例.22.(10分)如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結果保留根號).23.(12分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側,聯結,并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數關系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.24.(14分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
本題要先觀察a,b在數軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【題目詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【題目點撥】本題考查了實數與數軸的對應關系,數軸上右邊的數總是大于左邊的數.2、B【解題分析】
根據題中給出的函數圖像結合一次函數性質得出a<0,b>0,再由反比例函數圖像性質得出c<0,從而可判斷二次函數圖像開口向下,對稱軸:>0,即在y軸的右邊,與y軸負半軸相交,從而可得答案.【題目詳解】解:∵一次函數y=ax+b圖像過一、二、四,∴a<0,b>0,又∵反比例函數y=圖像經過二、四象限,∴c<0,∴二次函數對稱軸:>0,∴二次函數y=ax2+bx+c圖像開口向下,對稱軸在y軸的右邊,與y軸負半軸相交,故答案為B.【題目點撥】本題考查了二次函數的圖形,一次函數的圖象,反比例函數的圖象,熟練掌握二次函數的有關性質:開口方向、對稱軸、與y軸的交點坐標等確定出a、b、c的情況是解題的關鍵.3、C【解題分析】試題分析:先利用配方法得到y=﹣(x﹣1)2+1,然后根據二次函數的最值問題求解.解:y=﹣(x﹣1)2+1,∵a=﹣1<0,∴當x=1時,y有最大值,最大值為1.故選C.考點:二次函數的最值.4、D【解題分析】
配方法一般步驟:將常數項移到等號右側,左右兩邊同時加一次項系數一半的平方,配方即可.【題目詳解】解:故選D.【題目點撥】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關鍵.5、D【解題分析】
解:根據圖中尺規作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【題目點撥】本題考查作圖—復雜作圖;平行線的判定與性質;三角形的外角性質.6、B【解題分析】分析:根據合并同類項、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式進行計算.詳解:A、a4與a5不是同類項,不能合并,故本選項錯誤;B、(2a2b3)2=4a4b6,故本選項正確;C、-2a(a+3)=-2a2-6a,故本選項錯誤;D、(2a-b)2=4a2-4ab+b2,故本選項錯誤;故選:B.點睛:本題主要考查了合并同類項的法則、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式,熟練掌握運算法則是解題的關鍵.7、A【解題分析】
先利用勾股定理計算出AB,再在Rt△BDE中,求出BD即可;【題目詳解】解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,故選A.【題目點撥】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.8、C【解題分析】
連接OC、OD,根據正六邊形的性質得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據題意計算即可.【題目詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【題目點撥】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關鍵.9、D【解題分析】
根據整式的混合運算計算得到結果,即可作出判斷.【題目詳解】A、2與a不是同類項,不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.10、B【解題分析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經過點時,拋物線的開口最小,取得最大值拋物線經過△ABC區域(包括邊界),的取值范圍是:當時,拋物線經過點時,拋物線的開口最小,取得最小值拋物線經過△ABC區域(包括邊界),的取值范圍是:故選B.點睛:二次函數二次項系數決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.二、填空題(共7小題,每小題3分,滿分21分)11、y(x++2y)(x-2y)【解題分析】
首先提公因式,再利用平方差進行分解即可.【題目詳解】原式.故答案是:y(x+2y)(x-2y).【題目點撥】考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.12、x<1【解題分析】
要使代數式有意義時,必有1﹣x>2,可解得x的范圍.【題目詳解】根據題意得:1﹣x>2,解得:x<1.故答案為x<1.【題目點撥】考查了分式和二次根式有意義的條件.二次根式有意義,被開方數為非負數,分式有意義,分母不為2.13、6﹣2【解題分析】
由旋轉角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;設B′C′和CD的交點是O,連接OA,構造全等三角形,用S陰影部分=S正方形﹣S四邊形AB′OD,計算面積即可.【題目詳解】解:設B′C′和CD的交點是O,連接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四邊形AB′OD=2S△AOD=2××=2,∴S陰影部分=S正方形﹣S四邊形AB′OD=6﹣2.【題目點撥】此題的重點是能夠計算出四邊形的面積.注意發現全等三角形.14、【解題分析】分析:直接利用二次根式的性質進行化簡即可.詳解:==.故答案為.點睛:本題主要考查了分母有理化,正確掌握二次根式的性質是解題的關鍵.15、-1【解題分析】【分析】先去分母,化為整式方程,然后再進行檢驗即可得.【題目詳解】兩邊同乘(x+2)(x-2),得:x-2﹣3x=0,解得:x=-1,檢驗:當x=-1時,(x+2)(x-2)≠0,所以x=-1是分式方程的解,故答案為:-1.【題目點撥】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.16、1.【解題分析】解:因為眾數為3,可設a=3,b=3,c未知,平均數=(1+3+1+1+3+3+c)÷7=1,解得c=0,將這組數據按從小到大的順序排列:0、1、1、1、3、3、3,位于最中間的一個數是1,所以中位數是1,故答案為:1.點睛:本題為統計題,考查平均數、眾數與中位數的意義,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會出錯.17、不合理,樣本數據不具有代表性【解題分析】
根據表中所取的樣本不具有代表性即可得到結論.【題目詳解】不合理,樣本數據不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數據不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【題目點撥】本題考查了統計表,認真分析表中數據是解題的關鍵.三、解答題(共7小題,滿分69分)18、證明見解析.【解題分析】
(1)根據旋轉的性質可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據垂直可得出∠DBE=∠CBE=30°,繼而可根據SAS證明△BDE≌△BCE;(2)根據(1)以及旋轉的性質可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【題目詳解】(1)證明:∵△BAD是由△BEC在平面內繞點B旋轉60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉的性質;全等三角形的判定與性質;菱形的判定.19、【解題分析】
將②×3,再聯立①②消未知數即可計算.【題目詳解】解:②得:③①+③得:把代入③得∴方程組的解為【題目點撥】本題考查二元一次方程組解法,關鍵是掌握消元法.20、(1)總調查人數是100人;(2)在扇形統計圖中“其它”類的圓心角是36°;(3)補全頻數分布直方圖見解析;(4)估計一下全校課余愛好是閱讀的學生約為960人.【解題分析】
(1)利用參加運動的人數除以其所占的比例即可求得這次調查的總人數;(2)用360°乘以“其它”類的人數所占的百分比即可求解;(3)求得“其它”類的人數、“娛樂”類的人數,補全統計圖即可;(4)用總人數乘以課余愛好是閱讀的學生人數所占的百分比即可求解.【題目詳解】(1)從條形統計圖中得出參加運動的人數為20人,所占的比例為20%,∴總調查人數=20÷20%=100人;(2)參加娛樂的人數=100×40%=40人,從條形統計圖中得出參加閱讀的人數為30人,∴“其它”類的人數=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形統計圖中“其它”類的圓心角=360×10%=36°;(3)如圖(4)估計一下全校課余愛好是閱讀的學生約為3200×=960(人).【題目點撥】本題考查了條形統計圖、扇形統計圖的應用,從條形統計圖、扇形統計圖中獲取必要的信息是解決問題的關鍵.21、(1)①真;②真;③真;(2)逆命題是:有兩邊上的中線相等的三角形是等腰三角形;見解析.【解題分析】
(1)根據命題的真假判斷即可;(2)根據全等三角形的判定和性質進行證明即可.【題目詳解】(1)①等腰三角形兩腰上的中線相等是真命題;②等腰三角形兩底角的角平分線相等是真命題;③有兩條角平分線相等的三角形是等腰三角形是真命題;故答案為真;真;真;(2)逆命題是:有兩邊上的中線相等的三角形是等腰三角形;已知:如圖,△ABC中,BD,CE分別是AC,BC邊上的中線,且BD=CE,求證:△ABC是等腰三角形;證明:連接DE,過點D作DF∥EC,交BC的延長線于點F,∵BD,CE分別是AC,BC邊上的中線,∴DE是△ABC的中位線,∴DE∥BC,∵DF∥EC,∴四邊形DECF是平行四邊形,∴EC=DF,∵BD=CE,∴DF=BD,∴∠DBF=∠DFB,∵DF∥EC,∴∠F=∠ECB,∴∠ECB=∠DBC,在△DBC與△ECB中,∴△DBC≌△ECB,∴EB=DC,∴AB=AC,∴△ABC是等腰三角形.【題目點撥】本題考查了全等三角形的判定與性質及等腰三角形的性質;證明的步驟是:先根據題意畫出圖形,再根據圖形寫出已知和求證,最后寫出證明過程.22、CE的長為(4+)米【解題分析】
由題意可先過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.【題目詳解】過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH?tan∠CAH,∴CH=AH?tan∠CAH=6tan30°=6×=2(米),∵DH
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年語文考試實踐性試題及答案解析
- 2025年藥師考試未來發展趨勢探討試題及答案
- 主管護師考試案例分析技巧試題及答案
- 探討中國文化的試題及答案匯編
- 執業藥師考試中的理論與實操問題試題及答案
- 中國文化概論考試準備指南
- 執業護士考試案例分享與專業思維的培養試題及答案
- 2025年主管護師考試豐富資源試題及答案
- 中國老年圍術期麻醉管理指導意見課件
- 制藥公用系統工程 空氣凈化課件
- 2024年湖南省衡陽八中教育集團直選生數學模擬試卷+
- 胸痛規范化評估與診斷中國專家共識(全文)
- 2024藥店質量負責人聘用合同范本
- DL∕T 1099-2009 防振錘技術條件和試驗方法
- 2024年春七年級歷史下冊 第一單元 隋唐時期 繁榮與開放的時代 第1課 隋朝的統一與滅亡教案 新人教版
- CJ/T 156-2001 溝槽式管接頭
- 黑龍江省齊齊哈爾市五縣聯考2023-2024學年七年級下學期期末數學試題
- CJJT81-2013 城鎮供熱直埋熱水管道技術規程
- 圖集04S206自動噴水與水噴霧滅火設施安裝
- IQC來料不合格品處理流程管理規定
- 2023年拍賣師考試真題模擬匯編(共469題)
評論
0/150
提交評論