




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆甘肅省河西五市數學高三第一學期期末統考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列中,若,則此數列中一定為0的是()A. B. C. D.2.下列函數中,在區間上單調遞減的是()A. B. C. D.3.已知數列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-14.已知復數滿足,則的值為()A. B. C. D.25.已知函數,其中,若恒成立,則函數的單調遞增區間為()A. B.C. D.6.向量,,且,則()A. B. C. D.7.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.8.設為非零實數,且,則()A. B. C. D.9.已知函數在上有兩個零點,則的取值范圍是()A. B. C. D.10.若復數滿足,則的虛部為()A.5 B. C. D.-511.設復數滿足,則()A. B. C. D.12.已知,,,若,則正數可以為()A.4 B.23 C.8 D.17二、填空題:本題共4小題,每小題5分,共20分。13.已知函數函數,其中,若函數恰有4個零點,則的取值范圍是__________.14.若且時,不等式恒成立,則實數a的取值范圍為________.15.設函數,則滿足的的取值范圍為________.16.由于受到網絡電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經濟損失,現將地區200家實體店該品牌洗衣機的月經濟損失統計如圖所示,估算月經濟損失的平均數為,中位數為n,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當直線經過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設直線的斜率分別是,當直線的縱截距為1時,有數列滿足,設數列的前n項和為,已知存在正整數使得,求m的值.18.(12分)設橢圓的離心率為,左、右焦點分別為,點D在橢圓C上,的周長為.(1)求橢圓C的標準方程;(2)過圓上任意一點P作圓E的切線l,若l與橢圓C交于A,B兩點,O為坐標原點,求證:為定值.19.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸建立極坐標系,射線的極坐標方程為,射線的極坐標方程為.(Ⅰ)寫出曲線的極坐標方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.20.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.21.(12分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當四邊形為菱形時,求長.22.(10分)已知函數的最小正周期是,且當時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
將已知條件轉化為的形式,由此確定數列為的項.【詳解】由于等差數列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.2、C【解析】
由每個函數的單調區間,即可得到本題答案.【詳解】因為函數和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數的單調區間,屬基礎題.3、D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數列的通項公式.4、C【解析】
由復數的除法運算整理已知求得復數z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數的除法運算與求復數的模,屬于基礎題.5、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數的單調區間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.6、D【解析】
根據向量平行的坐標運算以及誘導公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數以及誘導公式的應用,屬于中檔題.7、A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.8、C【解析】
取,計算知錯誤,根據不等式性質知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質,意在考查學生對于不等式性質的靈活運用.9、C【解析】
對函數求導,對a分類討論,分別求得函數的單調性及極值,結合端點處的函數值進行判斷求解.【詳解】∵,.當時,,在上單調遞增,不合題意.當時,,在上單調遞減,也不合題意.當時,則時,,在上單調遞減,時,,在上單調遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導數解決函數零點的問題,考查了函數的單調性及極值問題,屬于中檔題.10、C【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.11、D【解析】
根據復數運算,即可容易求得結果.【詳解】.故選:D.【點睛】本題考查復數的四則運算,屬基礎題.12、C【解析】
首先根據對數函數的性質求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數可以為8.故選:C【點睛】本題考查對數函數的性質的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵,∴,∵函數y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數y=f(x)+f(2?x)與y=b的圖象如下,,結合圖象可知,<b<2,故答案為.點睛:(1)求分段函數的函數值,要先確定要求值的自變量屬于哪一段區間,然后代入該段的解析式求值,當出現f(f(a))的形式時,應從內到外依次求值.(2)當給出函數值求自變量的值時,先假設所求的值在分段函數定義區間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍.14、【解析】
將不等式兩邊同時平方進行變形,然后得到對應不等式組,對的取值進行分類,將問題轉化為二次函數在區間上恒正、恒負時求參數范圍,列出對應不等式組,即可求解出的取值范圍.【詳解】因為,所以,所以,所以,所以或,當時,對且不成立,當時,取,顯然不滿足,所以,所以,解得;當時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點睛】本題考查根據不等式恒成立求解參數范圍,難度較難.根據不等式恒成立求解參數范圍的兩種常用方法:(1)分類討論法:分析參數的臨界值,對參數分類討論;(2)參變分離法:將參數單獨分離出來,再以函數的最值與參數的大小關系求解出參數范圍.15、【解析】
當時,函數單調遞增,當時,函數為常數,故需滿足,且,解得答案.【詳解】,當時,函數單調遞增,當時,函數為常數,需滿足,且,解得.故答案為:.【點睛】本題考查了根據函數單調性解不等式,意在考查學生對于函數性質的靈活運用.16、360【解析】
先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數在第二塊求解,然后再求得平均數作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點睛】本題考查頻率分布直方圖、樣本的數字特征,考查運算求解能力以及數形結合思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)設出直線的方程,再與拋物線聯立方程組,進而求得點的坐標,結合弦長即可求得拋物線的方程;(2)設直線的方程,運用韋達定理可得,可得之間的關系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設過拋物線焦點的直線方程為,與拋物線方程聯立得:,設,所以,,,所以拋物線方程為(2)設直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關系,考查了韋達定理和運用裂項法求數列的和,考查了運算能力,屬于中檔題.18、(1)(2)見解析【解析】
(1)由,周長,解得,即可求得標準方程.(2)通過特殊情況的斜率不存在時,求得,再證明的斜率存在時,即可證得為定值.通過設直線的方程為與橢圓方程聯立,借助韋達定理求得,利用直線與圓相切,即,求得的關系代入,化簡即可證得即可證得結論.【詳解】(1)由題意得,周長,且.聯立解得,,所以橢圓C的標準方程為.(2)①當直線l的斜率不存在時,不妨設其方程為,則,所以,即.②當直線l的斜率存在時,設其方程為,并設,由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點睛】本題考查了橢圓的標準方程,直線與橢圓的位置關系中定值問題,考查了學生計算求解能力,難度較難.19、(Ⅰ),曲線是以為圓心,為半徑的圓;(Ⅱ).【解析】
(Ⅰ)由曲線的參數方程能求出曲線的普通方程,由此能求出曲線的極坐標方程.(Ⅱ)令,,則,利用誘導公式及二倍角公式化簡,再由余弦函數的性質求出面積的取值范圍;【詳解】解:(Ⅰ)由(為參數)化為普通方程為,整理得曲線是以為圓心,為半徑的圓.(Ⅱ)令,,,,面積的取值范圍為【點睛】本題考查曲線的極坐標方程的求法,考查三角形的面積的求法,考查參數方程、直角坐標方程、極坐標方程的互化等基礎知識,考查運算求解能力,屬于中檔題.20、(1)(2)是為定值,的橫坐標為定值【解析】
(1)根據“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結合橢圓離心率以及,求得,由此求得橢圓方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,化簡后寫出根與系數關系.求得直線的方程,并求得兩直線交點的橫坐標,結合根與系數關系進行化簡,求得的橫坐標為定值.【詳解】(1)依題意可知,解得,即;而,即,結合解得,,因此橢圓方程為(2)由題意得,左焦點,設直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯系方程,解得,又因為.所以.所以的橫坐標為定值.【點睛】本小題主要考查根據橢圓離心率求橢圓方程,考查直線和橢圓的位置關系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.21、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點,從而得出是的中點,可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因為,兩點不在棱的端點處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長交的延長線于點,若四邊形為菱形,則,易證,所以,即為的中點,因此,且,所以是的中位線,則是的中點,所以.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和線段長的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CAOE 26-2021海洋生態本底調查與評價規范
- 西門子筆試題java面試題及答案
- 白柵欄考試題及答案
- sshm面試題及答案
- 護理競賽考試題庫及答案
- 地球文明考試題及答案
- 公考面試題型套路及答案
- 人生重在反思班會課件
- 食管賁門黏膜撕裂綜合征的臨床護理
- T/CADBM 62-2022多元鎂輕質無機板
- 2025中國工商銀行總行本部秋季校園招聘100人易考易錯模擬試題(共500題)試卷后附參考答案
- 《濾泡狀甲狀腺癌》教學課件
- GB 19646-2025食品安全國家標準稀奶油、奶油和無水奶油
- 直流電動機結構與工作原理課件
- 電力交易員試題及答案
- 宗地圖測繪合同協議
- 網約車租賃合同協議書
- 2025年04月工業和信息化部產業發展促進中心社會公開招聘29人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 寫字樓保安知識培訓課件
- 2025-2030中國鼻腔護理液行業市場現狀分析及競爭格局與投資發展研究報告
- 奶茶行業市場調研
評論
0/150
提交評論