2024屆福建省福州十中學市級名校中考數學猜題卷含解析_第1頁
2024屆福建省福州十中學市級名校中考數學猜題卷含解析_第2頁
2024屆福建省福州十中學市級名校中考數學猜題卷含解析_第3頁
2024屆福建省福州十中學市級名校中考數學猜題卷含解析_第4頁
2024屆福建省福州十中學市級名校中考數學猜題卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建省福州十中學市級名校中考數學猜題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱2.如圖,雙曲線y=(k>0)經過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.63.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為20km.他們前進的路程為s(km),甲出發后的時間為t(h),甲、乙前進的路程與時間的函數圖象如圖所示.根據圖象信息,下列說法正確的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出發1h D.甲比乙晚到B地3h4.的值是A.±3 B.3 C.9 D.815.“a是實數,|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機事件6.這個數是()A.整數 B.分數 C.有理數 D.無理數7.如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)8.如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°9.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.10.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結論正確的個數是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.方程3x2﹣5x+2=0的一個根是a,則6a2﹣10a+2=_____.12.若是關于的完全平方式,則__________.13.如圖,直線y=x+2與反比例函數y=的圖象在第一象限交于點P.若OP=,則k的值為________.14.若a2﹣2a﹣4=0,則5+4a﹣2a2=_____.15.下圖是在正方形網格中按規律填成的陰影,根據此規律,則第n個圖中陰影部分小正方形的個數是.16.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為_____.三、解答題(共8題,共72分)17.(8分)如圖,某校數學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數據:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7318.(8分)已知△OAB在平面直角坐標系中的位置如圖所示.請解答以下問題:按要求作圖:先將△ABO繞原點O逆時針旋轉90°得△OA1B1,再以原點O為位似中心,將△OA1B1在原點異側按位似比2:1進行放大得到△OA2B2;直接寫出點A1的坐標,點A2的坐標.19.(8分)如圖,AB為⊙O的直徑,點E在⊙O,C為弧BE的中點,過點C作直線CD⊥AE于D,連接AC、BC.試判斷直線CD與⊙O的位置關系,并說明理由若AD=2,AC=,求⊙O的半徑.20.(8分)如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F,G.(1)求點D沿三條圓弧運動到點G所經過的路線長;(2)判斷線段GB與DF的長度關系,并說明理由.21.(8分)已知:如圖,在平面直角坐標系xOy中,拋物線的圖像與x軸交于點A(3,0),與y軸交于點B,頂點C在直線上,將拋物線沿射線AC的方向平移,當頂點C恰好落在y軸上的點D處時,點B落在點E處.(1)求這個拋物線的解析式;(2)求平移過程中線段BC所掃過的面積;(3)已知點F在x軸上,點G在坐標平面內,且以點C、E、F、G為頂點的四邊形是矩形,求點F的坐標.22.(10分)如圖,點D為△ABC邊上一點,請用尺規過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)23.(12分)如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經過點A(3,-1),與y軸交于點B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經過點A的直線交拋物線于點P,交x軸于點Q,若S△OPA=2S△OQA,試求出點P的坐標.24.今年以來,我國持續大面積的霧霾天氣讓環保和健康問題成為焦點.為了調查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調查,調查結果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據調查統計結果,繪制了不完整的三種統計圖表.對霧霾了解程度的統計表:對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結合統計圖表,回答下列問題.(1)本次參與調查的學生共有人,m=,n=;(2)圖2所示的扇形統計圖中D部分扇形所對應的圓心角是度;(3)請補全條形統計圖;(4)根據調查結果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態度的小明和小剛中選一人參加,現設計了如下游戲來確定,具體規則是:把四個完全相同的乒乓球標上數字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數字和為奇數,則小明去;否則小剛去.請用樹狀圖或列表法說明這個游戲規則是否公平.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

由BD是∠ABC的角平分線,根據角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據等角對等邊得到BC=CD,從而得到正確的選項.【題目詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【題目點撥】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.2、B【解題分析】

先根據矩形的特點設出B、C的坐標,根據矩形的面積求出B點橫縱坐標的積,由D為AB的中點求出D點的橫縱坐標,再由待定系數法即可求出反比例函數的解析式.【題目詳解】解:如圖:連接OE,設此反比例函數的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設D(x,y),∵D和E都在反比例函數圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【題目點撥】本題考查了反比例函數中比例系數k的幾何意義,涉及到矩形的性質及用待定系數法求反比例函數的解析式,難度適中.3、C【解題分析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由圖象知,甲出發1小時后乙才出發,乙到2小時后甲才到,故選C.4、C【解題分析】試題解析:∵∴的值是3故選C.5、A【解題分析】根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,由a是實數,得|a|≥0恒成立,因此,這一事件是必然事件.故選A.6、D【解題分析】

由于圓周率π是一個無限不循環的小數,由此即可求解.【題目詳解】解:實數π是一個無限不循環的小數.所以是無理數.

故選D.【題目點撥】本題主要考查無理數的概念,π是常見的一種無理數的形式,比較簡單.7、A【解題分析】分析:根據B點的變化,確定平移的規律,將△ABC向右移5個單位、上移1個單位,然后確定A、C平移后的坐標即可.詳解:由點B(﹣4,1)的對應點B1的坐標是(1,2)知,需將△ABC向右移5個單位、上移1個單位,則點A(﹣1,3)的對應點A1的坐標為(4,4)、點C(﹣2,1)的對應點C1的坐標為(3,2),故選A.點睛:此題主要考查了平面直角坐標系中的平移,關鍵是根據已知點的平移變化總結出平移的規律.8、D【解題分析】∵四邊形ADA'E的內角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.9、B【解題分析】

陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【題目詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【題目點撥】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.10、C【解題分析】

①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發生變化,所以④錯誤.【題目詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發生變化,故④錯誤;故選C.【題目點撥】本題考查了圖形與坐標的性質、三角形的面積求法、相似三角形的性質和判定、平行線等分線段定理、函數圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數形結合的數學思想方法.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1【解題分析】

根據一元二次方程的解的定義,將x=a代入方程3x1-5x+1=0,列出關于a的一元二次方程,通過變形求得3a1-5a的值后,將其整體代入所求的代數式并求值即可.【題目詳解】解:∵方程3x1-5x+1=0的一個根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【題目點撥】此題主要考查了方程解的定義.此類題型的特點是,利用方程解的定義找到相等關系,再把所求的代數式化簡后整理出所找到的相等關系的形式,再把此相等關系整體代入所求代數式,即可求出代數式的值.12、1或-1【解題分析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進而求出答案.詳解:∵x2+2(m-3)x+16是關于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關鍵.13、1【解題分析】設點P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合題意舍去),∴點P(1,1),∴1=,解得k=1.點睛:本題考查了反比例函數與一次函數的交點坐標,仔細審題,能夠求得點P的坐標是解題的關鍵.14、-3【解題分析】試題解析:∵即∴原式故答案為15、n1+n+1.【解題分析】試題解析:仔細觀察圖形知道:每一個陰影部分由左邊的正方形和右邊的矩形構成,分別為:第一個圖有:1+1+1個,第二個圖有:4+1+1個,第三個圖有:9+3+1個,…第n個為n1+n+1.考點:規律型:圖形的變化類.16、1;【解題分析】分析:根據輔助線做法得出CF⊥AB,然后根據含有30°角的直角三角形得出AB和BF的長度,從而得出AF的長度.詳解:∵根據作圖法則可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.點睛:本題主要考查的是含有30°角的直角三角形的性質,屬于基礎題型.解題的關鍵就是根據作圖法則得出直角三角形.三、解答題(共8題,共72分)17、AD的長約為225m,大樓AB的高約為226m【解題分析】

首先設大樓AB的高度為xm,在Rt△ABC中利用正切函數的定義可求得,然后根據∠ADB的正切表示出AD的長,又由CD=96m,可得方程,解此方程即可求得答案.【題目詳解】解:設大樓AB的高度為xm,

在Rt△ABC中,∵∠C=32°,∠BAC=92°,

∴,

在Rt△ABD中,,

∴,

∵CD=AC-AD,CD=96m,

∴,

解得:x≈226,∴

答:大樓AB的高度約為226m,AD的長約為225m.【題目點撥】本題考查解直角三角形的應用.要求學生能借助仰角構造直角三角形并解直角三角形,注意數形結合思想與方程思想的應用.18、(1)見解析;(2)點A1的坐標為:(﹣1,3),點A2的坐標為:(2,﹣6).【解題分析】

(1)直接利用位似圖形的性質得出對應點位置進而得出答案;(2)利用(1)中所畫圖形進而得出答案.【題目詳解】(1)如圖所示:△OA1B1,△OA2B2,即為所求;(2)點A1的坐標為:(﹣1,3),點A2的坐標為:(2,﹣6).【題目點撥】此題主要考查了位似變換以及旋轉變換,正確得出對應點位置是解題關鍵.19、(1)直線CD與⊙O相切;(2)⊙O的半徑為1.1.【解題分析】

(1)相切,連接OC,∵C為的中點,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直線CD與⊙O相切;(2)連接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切線,∴=AD?DE,∴DE=1,∴CE==,∵C為的中點,∴BC=CE=,∵AB為⊙O的直徑,∴∠ACB=90°,∴AB==2.∴半徑為1.120、(1)6π;(2)GB=DF,理由詳見解析.【解題分析】

(1)根據弧長公式l=nπr180【題目詳解】解:(1)∵AD=2,∠DAE=90°,

∴弧DE的長l1=90×π×2180=π,

同理弧EF的長l2=90×π×4180=2π,弧FG的長l3=90×π×6180=3π,

所以,點D運動到點G所經過的路線長l=l1+l2+l【題目點撥】本題考查弧長公式以及全等三角形的判定和性質,題目比較簡單,解題關鍵掌握是弧長公式.21、(1)拋物線的解析式為;(2)12;(1)滿足條件的點有F1(,0),F2(,0),F1(,0),F4(,0).【解題分析】分析:(1)根據對稱軸方程求得b=﹣4a,將點A的坐標代入函數解析式求得9a+1b+1=0,聯立方程組,求得系數的值即可;(2)拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,根據二次函數圖象上點的坐標特征和三角形的面積得到:∴.(1)聯結CE.分類討論:(i)當CE為矩形的一邊時,過點C作CF1⊥CE,交x軸于點F1,設點F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;(ii)當CE為矩形的對角線時,以點O為圓心,OC長為半徑畫弧分別交x軸于點F1、F4,利用圓的性質解答.詳解:(1)∵頂點C在直線x=2上,∴,∴b=﹣4a.將A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,∴拋物線的解析式為y=x2﹣4x+1.(2)過點C作CM⊥x軸,CN⊥y軸,垂足分別為M、N.∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.∵拋物線y=x2﹣4x+1與y軸交于點B,∴B(0,1),∴BD=2.∵拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,∴.(1)聯結CE.∵四邊形BCDE是平行四邊形,∴點O是對角線CE與BD的交點,即.(i)當CE為矩形的一邊時,過點C作CF1⊥CE,交x軸于點F1,設點F1(a,0).在Rt△OCF1中,,即a2=(a﹣2)2+5,解得:,∴點.同理,得點;(ii)當CE為矩形的對角線時,以點O為圓心,OC長為半徑畫弧分別交x軸于點F1、F4,可得:,得點、.綜上所述:滿足條件的點有),.點睛:本題考查了待定系數法求二次函數的解析式,二次函數圖象上點的坐標特征,平行四邊形的面積公式,正確的理解題意是解題的關鍵.22、見解析【解題分析】

以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【題目詳解】解:如圖,點E即為所求作的點.【題目點撥】本題主要考查作圖-相似變換,根據相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關鍵.23、(1)y=-x2+2x+2;(2)詳見解析;(3)點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解題分析】

(1)根據題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標,根據點的坐標求出AB、BC、AC的值,根據勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據相似三角形的判定和性質求出PE的長,即可得出答案.【題目詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論