




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年湖北省武漢市武漢外校中考五模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.122.在平面直角坐標系中,點(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.4.將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-25.用6個相同的小正方體搭成一個幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.6.已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE,過點A作AE的垂線交DE于點P,若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤7.如圖,在正五邊形ABCDE中,連接BE,則∠ABE的度數為()A.30° B.36° C.54° D.72°8.二次函數y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<09.下列計算正確的是()A.a2?a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=210.已知電流I(安培)、電壓U(伏特)、電阻R(歐姆)之間的關系為,當電壓為定值時,I關于R的函數圖象是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在2018年幫助居民累計節約用水305000噸,將數字305000用科學記數法表示為_____.12.當x=_____時,分式值為零.13.方程=1的解是_____.14.如圖,用黑白兩種顏色的紙片,按黑色紙片數逐漸增加1的規律拼成如圖圖案,則第4個圖案中有__________白色紙片,第n個圖案中有__________張白色紙片.15.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.16.如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____.17.一個不透明的袋中共有5個小球,分別為2個紅球和3個黃球,它們除顏色外完全相同,隨機摸出兩個小球,摸出兩個顏色相同的小球的概率為____.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,一艘輪船位于燈塔P的北偏東方向與燈塔Р的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東方向上的B處.求此時輪船所在的B處與燈塔Р的距離.(結果保留根號)19.(5分)“校園手機”現象越來越受到社會的關注.“寒假”期間,某校小記者隨機調查了某地區若干名學生和家長對中學生帶手機現象的看法,統計整理并制作了如下的統計圖:(1)求這次調查的家長人數,并補全圖1;(2)求圖2中表示家長“贊成”的圓心角的度數;(3)已知某地區共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?20.(8分)如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.21.(10分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC、AB于點E、F.(1)若∠B=30°,求證:以A、O、D、E為頂點的四邊形是菱形.(2)若AC=6,AB=10,連結AD,求⊙O的半徑和AD的長.22.(10分)徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發,分別乘坐“徐州號”高鐵A與“復興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?23.(12分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.24.(14分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統計,繪制出如下的統計圖①和圖②,請跟進相關信息,解答下列問題:(1)本次抽測的男生人數為,圖①中m的值為;(2)求本次抽測的這組數據的平均數、眾數和中位數;(3)若規定引體向上5次以上(含5次)為體能達標,根據樣本數據,估計該校350名九年級男生中有多少人體能達標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】
根據正方形的性質可得出AB∥CD,進而可得出△ABF∽△GDF,根據相似三角形的性質可得出=2,結合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【題目詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【題目點撥】本題考查了相似三角形的判定與性質、正方形的性質,利用相似三角形的性質求出AF的長度是解題的關鍵.2、C【解題分析】:∵點的橫縱坐標均為負數,∴點(-1,-2)所在的象限是第三象限,故選C3、A【解題分析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據反比例函數圖象上點的坐標特征計算k的值.【題目詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【題目點撥】本題考查了等腰直角三角形的性質以及反比例函數圖象上點的坐標特征,熟知反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.4、A【解題分析】試題分析:根據函數圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是y=(x﹣1)2+2,故選A.考點:二次函數圖象與幾何變換.5、D【解題分析】分析:根據主視圖和俯視圖之間的關系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項中的長和俯視圖不相等,故選D.點睛:本題主要考查的就是三視圖的畫法,屬于基礎題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.6、D【解題分析】
①首先利用已知條件根據邊角邊可以證明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE過點B作BF⊥AE延長線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯誤的;
③利用全等三角形的性質和對頂角相等即可判定③說法正確;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計算即可判定;
⑤連接BD,根據三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【題目詳解】由邊角邊定理易知△APD≌△AEB,故①正確;
由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,
所以∠BEP=90°,
過B作BF⊥AE,交AE的延長線于F,則BF的長是點B到直線AE的距離,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是錯誤的;
因為△APD≌△AEB,所以∠ADP=∠ABE,而對頂角相等,所以③是正確的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯誤的;
連接BD,則S△BPD=PD×BE=,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+.
綜上可知,正確的有①③⑤.故選D.【題目點撥】考查了正方形的性質、全等三角形的性質與判定、三角形的面積及勾股定理,綜合性比較強,解題時要求熟練掌握相關的基礎知識才能很好解決問題.7、B【解題分析】
在等腰三角形△ABE中,求出∠A的度數即可解決問題.【題目詳解】解:在正五邊形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故選B.【題目點撥】本題主要考查多邊形內角與外角的知識點,解答本題的關鍵是求出正五邊形的內角,此題基礎題,比較簡單.8、D【解題分析】
由二次函數的解析式可知,當x=1時,所對應的函數值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【題目詳解】解:∵二次函數y=ax2+bx-2的頂點在第三象限,且經過點(1,0)∴該函數是開口向上的,a>0
∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【題目點撥】本題考查大小二次函數的圖像,熟練掌握圖像的性質是解題的關鍵.9、A【解題分析】
直接利用合并同類項法則以及積的乘方運算法則、整式的除法運算法則分別計算得出答案.【題目詳解】A、a2?a3=a5,故此選項正確;B、2a+a2,無法計算,故此選項錯誤;C、(-a3)3=-a9,故此選項錯誤;D、a2÷a=a,故此選項錯誤;故選A.【題目點撥】此題主要考查了合并同類項以及積的乘方運算、整式的除法運算,正確掌握相關運算法則是解題關鍵.10、C【解題分析】
根據反比例函數的圖像性質進行判斷.【題目詳解】解:∵,電壓為定值,∴I關于R的函數是反比例函數,且圖象在第一象限,故選C.【題目點撥】本題考查反比例函數的圖像,掌握圖像性質是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3.05×105【解題分析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】305000=3.05×故答案為:3.05×10【題目點撥】本題考查的知識點是科學記數法—表示較大的數,解題關鍵是熟記科學計數法的表示方法.12、﹣1.【解題分析】試題解析:分式的值為0,則:解得:故答案為13、x=3【解題分析】去分母得:x﹣1=2,解得:x=3,經檢驗x=3是分式方程的解,故答案為3.【題目點撥】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結果須代入最簡公分母進行檢驗,結果為零,則原方程無解;結果不為零,則為原方程的解.14、133n+1【解題分析】分析:觀察圖形發現:白色紙片在4的基礎上,依次多3個;根據其中的規律得出第n個圖案中有白色紙片即可.詳解:∵第1個圖案中有白色紙片3×1+1=4張第2個圖案中有白色紙片3×2+1=7張,第3圖案中有白色紙片3×3+1=10張,∴第4個圖案中有白色紙片3×4+1=13張第n個圖案中有白色紙片3n+1張,故答案為:13、3n+1.點睛:考查學生的探究能力,解題時必須仔細觀察規律,通過歸納得出結論.15、1.【解題分析】
試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質.16、4或4.【解題分析】
①當AF<AD時,由折疊的性質得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過E作EH⊥MN于H,由矩形的性質得到MH=AE=2,根據勾股定理得到A′H=,根據勾股定理列方程即可得到結論;②當AF>AD時,由折疊的性質得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過A′作HG∥BC交AB于G,交CD于H,根據矩形的性質得到DH=AG,HG=AD=6,根據勾股定理即可得到結論.【題目詳解】①當AF<AD時,如圖1,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,則AM=AD=3,過E作EH⊥MN于H,則四邊形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②當AF>AD時,如圖2,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,過A′作HG∥BC交AB于G,交CD于H,則四邊形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,綜上所述,折痕EF的長為4或4,故答案為:4或4.【題目點撥】本題考查了翻折變換-折疊問題,矩形的性質和判定,勾股定理,正確的作出輔助線是解題的關鍵.17、【解題分析】
解:根據題意可得:列表如下紅1紅2黃1黃2黃3紅1紅1,紅2紅1,黃1紅1,黃2紅1,黃3紅2紅2,紅1紅2,黃1紅2,黃2紅2,黃3黃1黃1,紅1黃1,紅2黃1,黃2黃1,黃3黃2黃2,紅1黃2,紅2黃2,黃1黃2,黃3黃3黃3,紅1黃3,紅2黃3,黃1黃3,黃2共有20種所有等可能的結果,其中兩個顏色相同的有8種情況,故摸出兩個顏色相同的小球的概率為.【題目點撥】本題考查列表法和樹狀圖法,掌握步驟正確列表是解題關鍵.三、解答題(共7小題,滿分69分)18、海里【解題分析】
過點P作,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB.【題目詳解】解:如圖,過點P作,垂足為點C.∴,,海里.在中,,∴(海里).在中,,∴(海里).∴此時輪船所在的B處與燈塔P的距離是海里.【題目點撥】解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.19、(1)答案見解析(2)36°(3)4550名【解題分析】試題分析:(1)根據認為無所謂的家長是80人,占20%,據此即可求得總人數;(2)利用360乘以對應的比例即可求解;(3)利用總人數6500乘以對應的比例即可求解.(1)這次調查的家長人數為80÷20%=400人,反對人數是:400-40-80=280人,;(2)360×=36°;(3)反對中學生帶手機的大約有6500×=4550(名).考點:1.條形統計圖;2.用樣本估計總體;3.扇形統計圖.20、(1)證明見解析;(2);【解題分析】
(1)根據正方形的性質得到∠GAD=∠EAB,證明△GAD≌△EAB,根據全等三角形的性質證明;(2)根據正方形的性質得到BD⊥AC,AC=BD=5,根據勾股定理計算即可.【題目詳解】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB,∴EB=GD;(2)∵四邊形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5,∴∠DOG=90°,OA=OD=BD=,∵AG=2,∴OG=OA+AG=,由勾股定理得,GD==,∴EB=.【題目點撥】本題考查的是正方形的性質、全等三角形的判定和性質,掌握正方形的對角線相等、垂直且互相平分是解題的關鍵.21、(1)證明見解析;(2);3.【解題分析】試題分析:(1)連接OD、OE、ED.先證明△AOE是等邊三角形,得到AE=AO=0D,則四邊形AODE是平行四邊形,然后由OA=OD證明四邊形AODE是菱形;(2)連接OD、DF.先由△OBD∽△ABC,求出⊙O的半徑,然后證明△ADC∽△AFD,得出AD2=AC?AF,進而求出AD.試題解析:(1)證明:如圖1,連接OD、OE、ED.∵BC與⊙O相切于一點D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等邊三角形,∴AE=AO=0D,∴四邊形AODE是平行四邊形,∵OA=OD,∴四邊形AODE是菱形.(2)解:設⊙O的半徑為r.∵OD∥AC,∴△OBD∽△ABC.∴,即8r=6(8﹣r).解得r=,∴⊙O的半徑為.如圖2,連接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直徑,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC?AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.點評:本題考查了切線的性質、圓周角定理、等邊三角形的判定與性質、菱形的判定和性質以及相似三角形的判定和性質,是一個綜合題,難度中等.熟練掌握相關圖形的性質及判定是解本題的關鍵.考點:切線的性質;菱形的判定與性質;相似三角形的判定與性質.22、A車行駛的時間為3.1小時,B車行駛的時間為2.1小時.【解題分析】
設B車行駛的時間為t小時,則A車行駛的時間為1.4t小時,根據題意得:﹣=80,解分式方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年阿里5次面試碰壁100天深造-Jetpack架構組件從入門到精通險獲騰訊年薪45w+offer
- 2024-2025學年下學期高一生物人教版期末必刷常考題之人類遺傳病
- 建筑施工特種作業-建筑起重機械安裝拆卸工(物料提升機)真題庫-4
- 國家開放大學電大《資源與運營管理》機考終結性2套真題題庫及答案9
- 色彩與心理題目及答案
- 軟考信管題目及答案
- 11 1 用樣本估計總體-2026版53高考數學總復習A版精煉
- 5 2 平面向量的數量積及其應用-高考數學真題分類 十年高考
- 2023-2024學年河南省許昌市高二下學期7月期末教學質量檢測數學試題(解析版)
- 2024-2025學年陜西省西安市部分學校聯考高一上學期期末考試語文試題(解析版)
- 2025年 汾西礦業井下崗位高校畢業生招聘考試筆試試題(山西省)含答案
- 物理中考二輪復習教案 1作圖專題3(電學電磁學)
- 石膏廠安全管理制度 最終
- 2025年河北省中考麒麟卷生物(二)
- 結構動力學完整版本
- 2025年八年級數學下學期期末總復習八年級數學下學期期末測試卷(2)(學生版+解析)
- 四級閱讀測試題及答案
- 農村供水水質管理制度
- 建筑工地應急預案方案
- T/CIE 208-2024兒童機器人教育評價指南
- 2025年高考英語課后續寫高頻考點話題分類第07講 讀后續寫之成長類主題(講義)
評論
0/150
提交評論