




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
UsingAdvancedDesignSystemtoDesignanMMICAmplifier
ApplicationNoteNumber1462
AgilentEEsofEDA
PAGE
10
PAGE
11
Contents
Introduction 3
Two-StageMMICAmplifierDesign 5
Branch-LineCouplerDesign 16
Conclusion 29
Appendixes
AppendixA–UsingtheAdvancedModelComposer
toCreateaLibraryofInductorModels 30
AppendixB–RunningtheDesignRuleChecker 37
GeneralReferencesonBalancedAmplifiers
"MicrowavesandRFCircuits:Analysis,Synthesi,s"MaxW.Medley,ArtechHouse,1993,pp509-541.
"FoundationsforMicrostripCirc,u"itDesign
T.C.Edwards,JohnWileyandSons,1981,pp.242-244.
andDesigns
Introduction
TherearemanydesignstepsrequiredforthedevelopmentandmanufactureofMMICcircuits,asillustratedintheMMICDesignFlow.AdvancedDesignSystem(ADS)isacentralpartofthecompleteMMICdesignflow,andisusedthroughoutthisprocess.Thisapplicationnoteillustrates,throughthedesignofanMMICamplifier,severalofthecommonproblemsfacedindesigning,simulating,andproducingaphysicallayoutofanMMICcircuit,aswellasthevalidationstepsthatareneededtoverifythatthephysicallayoutstillproducesthedesiredresult.ItisbeyondthescopeofthisnotetodescribeallpossibledesignspecificationsforanMMICcircuit,butitdoesincludeenoughspecificationanddesignstepstoaddressmanycommondesignchallenges.
Thefollowingsectionsgiveastep-bystepdescriptionofa0.5-Watt,10-GHz,narrow-bandamplifierona100-μmGaAssubstrate.Theexamplefilesthatareusedhere($HPEESOF_DIR/examples/MW_Ckts/MMIC_Amp_prjandMMIC_AmpEM_Sims_prj)
areincludedwiththeADS2003Asoftware.Designanddatadisplayfilenamesfromtheexamplesarereferencedthroughout.
TheseexampledesignsusecomponentsfromagenericdesignkitthatisprovidedwithADS2003A($HPEESOF_DIR/examples/DesignKit/DemoKit.)Themodelsforthesecomponentsdonotcorrespondtoanyspecificfoundryprocess,butarerepresentativeofdesignkitsavailablefrommanyfoundries.
Althoughthedevelopmentofthegenericdesignkitisoutsidethescopeofthisapplicationnote,itisdocumentedintheADS2003Amanual,titledDesignKitDevelopment.Thismanualprovidesinstructionsthatguidefoundriesindevelopingtheirowndesignkits.
Theamplifierdesignprocessdependsonanumberoffactors,includingdesired
specifications,availabilityofdevicemodels,designerpreference,andmore.Thisappli-cationnotedescribesoneofmanypotentialsequences.Weassumethattwostagesofamplificationwillberequired:anoutputstageforpowerandaninputstagetoattainsufficientgain.Thedesignisabalancedamplifier,consistingoftwoparallel,two-stageamplifiers,withbranch-linecouplersattheinputandoutputimplementedaslumpedelementequivalentcircuits,tosplitthesignalattheinputandrecombineitat
theoutputafteramplification.
Figure1showsablockdiagramofthebalancedamplifiertopology.Figure2outlineshowtheimpedancestopresenttothedeviceswerechosen.
Thedesignflowbeginswithseveralsimulationstepsandproceedswithphysicaldesignsteps,withsomesimulationsforverificationofthephysicaldesign.Threemaindesigntasksarerequiredtocompletetheamplifier:designofthefirst-stage(preamplifier),designofthesecondstage(poweramplifier),anddesignofthe
branch-linecouplers.
1_0
Input
0.707_0
3-dB
coupler
3-dB
coupler
0.707_90
Output
Inputmatching
1stFETwith
stabilization
Interstagematching
2nd Output
FET matching
Figure1.Balancedamplifierblockdiagram,utilizingtwo,two-stageamplifiersinparallel.
(a)
(d)
1stFETwith
stabilization
2ndFET
(b)
(c)
Figure2.Choosingimpedances.(a)ChoosesourceZforminimumnoisefigure,aslongasgainremainsreasonable.(b)ChooseloadZforconjugatematching,afterchoosingsourceZ(althoughaslightmismatchwasfoundtogiveahigher1-dBgaincompressionoutputpower).(c)ChoosesourceZforconjugatematching,afterchoosingloadZ.(d)ChooseloadZformaximumpowerdelivered.
Two-StageMMICAmplifierDesign
Thissectionoutlinesthegeneralstepsfortwo-stageMMICamplifierdesign.
Selectanactivedevice.
Thiswilldependonthespecificationsyouareattemptingtomeet(suchasfrequency,power,andnoise),andthedevicesofferedbyaparticularfoundry.TheDemoKithasonlyonedevice,aHEMT(highelectronmobilitytransistor),soaselectionprocessisnotrequired.
Idealbias–first-stage
Chooseabiaspointtomaximizethetransconductance,Gm,whichshouldalsomaximizethegainofthefirst-stagedevice.TheFET_Gm_Calcsschematic,showninFigure3,simulatestheI-VcurvesofthedeviceandcalculatesGmateachbiaspointasafunctionoftheslopeoftheIDS-versus-VGScurve.
TheplotinFigure4indicatesthatbiasingVGStoabout–0.15VshouldmaximizeGm.TheAmplifierDesignGuidehasanupdatedversionofthissimulationsetup,underDesignGuide>Amplifier>DCandBiasPointSimulations>FETI-VCurves,ClassAPower,Eff.,Load,Gmvs.Bias,thatcalculatesGmversusDCbiaspoint,usinganACsimulationatonefrequencytodetermineGm.
Figure3.TheFET_Gm_Calcsschematic,forsimulatingadevice’stransconductanceversusbias.
Figure4.Plotofdraincurrent,IDS,versusgatevoltage,VGS,andtransconductance,Gm.
Impedancematchingwithidealelements–first-stage
Determinetheoptimalsourceandloadreflectioncoefficientstopresenttothefirst-stagedevice,basedonnoisefigureandgain.Ifnoiseisnotimportant,thenjustdesignforgain.ThesimulationsetupfromtheAmplifierDesignGuide(fromaschematic,DesignGuide>Amplifier>DCandBiasPointSimulations>FETNoiseFig.,S-Params,Gain,Stability,andCirclesvs.Bias)isshowninFigure5.
Inthissetup,thegateanddrainvoltagesareswept,andtheS-parametersandnoiseparametersofthefirststagedevicearesimulatedat10GHz,ateachbiaspoint.Thecorrespondingdatadisplayshowsnoise,gain,andstabilitycircles,whichareallupdated,dependingonthebiaspointyouselectwithamarker,asshowninFigure6.
Abouta1-dBnoisefigureand>16dBofgainshouldbeachievable,butthedeviceispotentiallyunstable,asindicated
bythesourcestabilitycirclebeingwell
withintheunitSmithchart. Figure5.TheFET_SP_NF_Match_Circschematic,forsimulatingadevice’sS-parameters,gain,noise
figure,andstabilityversusbias.
Figure6.Thegain,noise,andstabilitycirclesareplottedforthebiaspointselectedbymarkermBiasPt.
Attainingstabilitywithidealelements–first-stage
Feedbackelementsareaddedbetweenthegateandgroundandbetweenthegateanddrainofthefirst-stageFETtoimprovestability.OptimizethestabilitycircuitsusingtheGain_and_Stab_optschematicfromtheAmplifierDesignGuide(fromaschematic,DesignGuide>Amplifier>S-ParameterSimulations>FeedbackNetworkOptimizationtoAttainStability),asshowninFigure7.
Thissimulationincludesgoalstoforcethegeometricsourceandloadstabilityfactors,mu_sourceandmu_load,respectively,tobe>1overabroadfrequencyrange.[Ref.M.L.Edwardsand
J.H.Sinsky,"Anewcriterionforlinear2-portstabilityusinggeometricallyderivedparameters",IEEETransactionsonMicrowaveTheoryandTechniques,Vol.40,No.12,pp.2303-2311,Dec.1992.]
Ifthesestabilityfactorsare>1,thenneitherthesourcenorloadstabilitycircleintersectstheunitSmithchart.
Minimumnoisefigureandgainareincludedasoptimizationgoals,otherwiseperformancemightbedegradedtoomuchtoattainstability.Theresults,showninFigure8,showgoodstabilityperformanceandreasonablygoodgainandminimumnoisefigure,butwithideallumpedelements.
Figure7.OptimizationoffeedbackandshuntR,L,andCvaluestoattainstabilitywithoutdegradingnoisefigureandgaintoomuch.
Figure8.Gainandstabilityoptimizationresults.
Replaceidealelementswithdesignkitelements–first-stageReplacingtheidealelementsinthestabilizationnetworkwithdesignkitelementsshowsadegradationinstability.Werunadiscrete-valueoptimizationtoadjustthedesignkitelementstoattainbetterstability.Discrete-valueoptimizationisnecessaryifsomeoftheparameterstobeoptimizedmayhaveonlydiscretevalues,suchasthenumberofturnsofaspiralinductor.TheresultoftheoptimizationisshowninFigure9.
ToimprovestabilitynearDC,weaddeda10-Ohmresistorinserieswiththeinductorbiasingthegateofthedevice,atalaterstepinthedesign.Discrete-valueoptimizationcanbequitetime-consuming,sinceitcarriesoutanexhaustivesearchofallpossiblecombinationsofparametervalues.Itisrecommendedtofirstrunacontinuousoptimizationtogetidealelementvaluesasastartingpoint,andthenrunadiscrete-valueoptimization,allowingtheparametervaluestovaryoveronlyalimitedrange.Certaincontinuousoptimizationtypes(mainlyrandomanditsvariations)willhandlebothcontinuousanddiscreteoptimizablevariables.
Impedancematching–first-stagewithstabilizationnetworkDeterminetheoptimalsourceandloadimpedancestopresenttothestabilizedFET,viaS-parameterandnoisefiguresimulations,usingtheSP_NF_GainMatchKschematicfromtheAmplifierDesignGuide(fromtheschematicDesignGuide>Amplifier>S-ParameterSimulations>S-Params,Gain,NF,Stability,GroupDelayvs.
SweptParameters,showninFigure10).
Figure9.Discretevalueoptimizationresults,usingcomponentsfromtheDemoKit.
Figure10.Simulationtodeterminetheoptimalsourceandloadimpedancesforgainorminimumnoisefigureforthefirststagedevicewithstabilizationnetwork.
Thedatadisplay,showninFigure11,showsthatwithasourceimpedanceof21.3+j*3.7ohms,thenoisefigureisabout2.0dB.Withthissourceimpedance,thecorrespondingoptimalloadimpedanceis65.1+j*38.5ohms,whichshouldgiveatransducerpowergainof13.1dB.Itwaslaterdiscoveredexperimentallythatgeneratingaload
impedanceof39.5+j*52.9ohmsgivesahigherone-dBgaincompressionoutputpowerforthetwo-stageamplifier,attheexpenseoflowergain,sothisimpedancewasusedinstead.Ifgainismoreimportantthannoise,thenasourceimpedancetomaximizegaincouldbechosen.
Loadpull–secondstagedeviceForthesecondstagewewanttogeneratemoreoutputpower,soweexperimentwiththedevicesize.Adevicesizefourtimesaslargeas
thefirststagedevicewasselected,althoughalargerdeviceshouldgivemoreoutputpower.Aloadpullsimulation,HB1Tone_LoadPullMagPh,copiedfromtheexamples/RF_Board/LoadPull_prj,showed26.7dBmpowerdelivered,withaloadof7.76+j*9.7ohms,asshowninFigure12.(Additionalloadpullutilitiesareavailableintheloadpullapplication,underDesignGuide>Loadpull,fromaschematicwindow.)
Figure11.Gainandnoisecirclesandoptimalsourceandloadimpedancesforminimumnoisefigure.
Figure12.Loadpullsimulationresults.
Sourcepull–secondstage
Asourcepullsimulation,HB1Tone_SourcePull,fromtheAmplifierDesignGuide,indicatesthatthepowerdeliveredtotheloaddoesnotdependmuchonthesourceimpedance.Sotheinterstagematchingnetworkisdesignedtoprovidethecomplexconjugateasthesourceimpedancetopresenttothesecond-stageFET,whilethisFETisterminatedintheoptimalloadimpedancedeterminedfromtheload-pullsimulation.
Designingtheinputmatchingnetwork
Therearethreematchingnetworkstobedesigned:theinputtothefirststage,theinterstagebetweenthefirstandsecondstage,andtheoutputofthesecondstage.Thingstoconsiderinchoosingthesenetworksincludethesizeofthepassiveelements,incorporatingDCblockingcapacitors,andmakingsomeofthenetworkshigh-passandotherslow-pass,sotheoverallresponseisband-pass.
Becauseoftherelativelylowoperatingfrequency,distributed-elementmatchingwouldrequiretoomuchspace,soweuselumpedelementsinstead.Becausethisimpedancematchingisatasinglefrequencyonly,two-element,lumpedmatchingmayberealizedquitesimply.
ThePassiveCircuitDesignGuidewasusedtogenerateasimple,lumped-elementmatchingnetworktogeneratethedesiredsourceimpedance,asshowninFigure13,andtheresultingnetworkisasimpleshunt-C,series-Lnetwork.(NotethatthissamematchcanbefoundintheMatchingutilityortheSmithChartutility.)
Figure13.Theinputmatchingnetwork.
Figure14.Simulatingtheimpedanceofabiasnetwork.
Figure15.Biasnetworkimpedancesimulationresults.
Replaceidealelementswithdesignkitelements
Thenetworkwithidealelementsmustbereplacedwithdesignkitelements,whichhaveparasitics.Theparasiticsvarywiththesizeofeachcomponent.
YouwanttheDC-biasinductortobelargeenoughtoprovideahigh
impedanceat10GHz,butnotsolargethatitsparasiticcapacitancetogroundcausesaself-resonancetooccurbelowthisfrequency.Figure14showsthesetupforsimulationoftheimpedanceofasimplebiasnetwork.
TheresultsareshowninFigure15.
TheinputmatchingcircuitwithdesignkitelementsandaDCbiasnetworkisshowninFigure16.
ThecorrespondinglayoutisshowninFigure17.Sincethiscircuitisusedtobiasthegateofthefirst-stagedevice,thereshouldbelittleornobiascurrentdrawnfromthesupply,soaresistorcouldbeusedinsteadoftheinductor.ThishastheadditionalbenefitofsavingGaAsrealestate.
Figure16.Inputmatchingcircuitschematic,withdesignkitelementsandaDCbiasnetwork.
Figure17.Correspondinginputmatchingcircuitlayout,withdesignkitelementsandaDCbiasnetwork.
Interstagematch
Theinterstagenetworktransformstheinputimpedanceofthesecond-stagedevicetotheoptimalloadimpedancetopresenttothefirst-stagedevice.TheMatchingutilitywasusedtodesign
thesimpleshunt-C,series-Lmatchingnetwork(orthePassiveCircuitDesignGuidecouldbeused).TheInterstageMatch_wBiasnetworkisshowninFigure18.ItshowstheinterstagematchingnetworkincludingdesignkitelementsandDCbiasinductors.
Thelayout,showninFigure19,hasthedrainbiasinductorofthefirststageveryclosetothegatebiasinductorofthesecondstage,socouplingislikelytooccur.Theamountofcouplingand
towhatdegreeitdegradescircuitperformancecanbedeterminedfromaMomentum(electromagnetic)
simulation,althoughwedidnotperformoneforthisexample.
Figure18.Theinterstagematchingnetwork,includingdesignkitelementsandDCbiasinductors.
Figure19.Interstagematchingnetworklayout.
Outputmatch–secondstageTheoutputmatchingnetworkisusedtotransform50Ohmstotheoptimalloadimpedance(7.76+j*9.7Ohms)topresenttotheoutputofthesecondstagedevice.Anideal,shunt-L,series-Cnetworkiscreatedusingthe
OutputMatch1schematicintheexample,whichcamefromtheAmplifierDesignGuide(anotheroptionforgeneratingimpedancematchingnetworks).TheOutputMatch_wBiasschematic(intheexamplefile,andnotshownhere)usesdesignkitelementsinsteadofidealelements,andincludesaDCbiasinductor.
Interstagematchandstabilityverification–S-probe
Thenextstepistoverifythatwhenweconnectthematchingnetworks,inputdevicewithitsstabilizationnetwork,andoutputdevicethatwearegeneratingthedesiredsourceandloadimpedancesateachdevice.Also,weneedtoverifythatthestabilityconditionsaresatisfiedattheinputandoutputplanesofeachdevice.AnS-probeisusedtodeterminethesourceandloadimpedancesattheinputandoutputofeachdevice.
TheS-probeisanelementthatyoucaninsertanywhereintoacircuitwithoutloadingit.Itwilldeterminetheimped-ancesandreflectioncoefficientslookinginbothdirections.Fromthesereflectioncoefficients,wecandeterminewhetherthesmall-signalstabilityconditionsaresatisfiedornot.TheS-probepairschematicusedinthisexampleisshowninFigure20.
Inputmatchverification
TheTwoStgAmpInZ_TB,showninFigure21,determinesthesourceandloadreflectioncoefficientspresentedtothefirststagedevice.
Figure20.S-probepairschematic.
Figure21.Determiningtheimpedanceslookingbothdirections,attheinputandoutputofthefirststageFET.
ThedatadisplayinFigure22showsthattheseimpedancesareclosetothedesiredvaluesat10GHz,andthatthestabilityconditionsaresatisfiedfrom
10MHzto20GHz.
OutputmatchverificationTwoStgAmpOutZ_TB(showninFigure23)determinesthesourceandloadreflectioncoefficientspresentedtotheoutputdevice.
Figure22.Sourceandloadimpedancesclosetothedesiredvaluesarebeinggeneratedbythematchingnetworks.
Figure23.Two-stageamplifieroutputschematic.
ThedatadisplayinFigure24showsthattheloadimpedanceisclosetothedesiredvalueat10GHz,andthatthestabilityconditionsaresatisfiedfrom10MHzto20GHz.(Itisnecessarytocheckstabilityconditionsoverabroadfrequencyrange,beyondtheoperatingbandofinterest,tocheckforundesiredpotentialoscillations.)Also,thesource
impedancepresentedtotheinputofthedeviceisclosetothecomplexconjugateofthedevice’sinputimpedance
at10GHz.
Two-stageamplifiergaincompression
Next,aswept-powersimulationofthetwo-stageamplifierwithmatchingnetworkswascarriedouttodeterminethemaximumoutputpowerthatcouldbesupplied,power-addedefficiency,1-dBcompressionpoint,etc.ThissimulationisTwoStgAmp_TB,asshowninFigure25,andindicatesamaximumoutputpowerofabout
26.6dBmandanoutputpoweratthe1-dBgaincompressionpointofabout25dBm.ThissimulationsetupanddatadisplayarefromtheAmplifier
DesignGuide(DesignGuide>Amplifier>1-ToneNonlinearSimulations>Spectrum,Gain,HarmonicDistortionvs.Power(w/PAE)).TherearemanyothersimulationsetupsintheAmplifierDesignGuide,soyoucouldlookatthingslikeintermodulationdistortion,1-dB
gaincompression,frequencyresponse,andresponsesversussweptparametersaswell.
Figure24.Sourceandloadimpedancesclosetothedesiredvaluesarebeinggeneratedforthesecond-stagedevice,andthestabilityconditionsaresatisfied.
Figure25.Simulatingthegaincompressionandpower-addedefficiencyofthetwo-stageamplifier.
Branch-LineCouplerDesign
Branch-linecouplersareusedattheinputandoutput,tosplitthesignaltobesentthroughtwoparallel,identicaltwo-stageamplifiersandthentorecombinethesignalsattheoutput.Oneoftheadvantagesofthisapproachisthattheinputandoutputmatchesoftheoverallamplifieraregood,eventhoughthetwo-stageamplifiermay
bemismatchedattheinputoroutput.Also,youpotentiallycanobtain3dBhigheroutputpowerthanasingleamplifiercouldprovidebyitself.
Branch-linecouplersmaybeimplementedviaquarter-wavelengthtransmissionlinesasshowninFigure26.Butat10GHz,theselineswouldbe2-3millimeterslong.Soinstead,thetransmissionlinesarereplacedbyC-L-Cpinetworks,asshowninFigure26.Thevaluesfortheinductorsandcapacitorsaregivenbytheequationsinthefigure.
ExactvaluesfortheLsandCsarecomputedontheBLC_LumpedIdealschematic,showninFigure27.(Itisusefultohaveanidealbranch-linecoupler,becauseitcanbeusedtodeterminethebestperformancethattheamplifieriscapableofachieving,andtodeterminewhethertimeandeffortshouldbeexpendedonimprovingaphysicalbranch-linecouplerdesignoronthetwo-stageamplifier.)TheseLsandCswereconvertedtodesignkitcomponents,with
aresultingdegradationinperformance.
Figure26.TheBranch-linecoupler,implementedastransmissionlines,canbeimplementedusinga-networkequivalentcircuitforeachl/4section,usingtheequationsshown[Reference,"FoundationsforMicrostripCircuitDesign,"T.C.Edwards,JohnWileyandSons,1981,pg.10.]
Figure27.Abranch-linecouplerimplementedusingideal,lumpedelements.
Adiscrete-valueoptimizationwasrun(setupisBranchLineCoupDiscOpt)asshowninFigure28,toimprovetheper-formanceofthebranch-linecouplercircuitimplementedwithdesignkitcomponents.
ThesimulationresultsareshownintheBLC_Lumped_TBdatadisplay,asshowninFigure29.
Figure28.Setupforoptimizingthebranch-linecouplerperformance.Theoptimizablevariablesaredefinedinthesubcircuit,asshowninFigure30.
Figure29.Optimizedbranch-linecouplerperformance.
TheoptimizedparametervaluesareshownontheBLC_Lumpedschematic,showninFigure30.TheBLC_LumpedBk_to_Bk_TBisusedtodeterminetheinsertionlossaswellastheoverallfrequencyresponseoftwobranch-linecouplersconnectedbacktoback.Ideally,thislosswouldbe0dB,buttheactuallosswillreducetheideal
3-dBincreaseinoutputpowerthatthisbalancedamplifierconfigurationwouldachieveifthesewerelossless.Youcancompensateforlossduetotheinputbranch-linecouplerbyincreasingtheinputsignalpower,butyoucannotmakeupforthelossduetotheoutputcoupler.
Preliminarybalancedamplifierperformance(withoutincludinginterconnectparasitics)
Combiningthetwo-stageamplifiersandlumped-elementbranch-linecouplerstogether,wegetabalancedamplifier.ThisissimulatedinBalancedLumpedAmp_TB,andshowninFigure31.ThisisthesamesimulationsetupfromtheAmplifierDesignGuidethatwasusedtoevaluatethetwo-stageamplifier.Theresultsshowasaturatedoutputpowerofabout29dBm,andanoutputpoweratthe1-dBgaincompressionpointofabout26.5dBm.
Theseresultsarewithdesignkitcomponents,butwithoutincludinganytransmissionlineeffects.
Figure30.Optimizedbranch-linecouplerparametervalues.
Figure31.Simulatingthegain,power,andpower-addedefficiencyofthepreliminarybalancedamplifier.
Creatingthelayout
Thelayoutofeachsubcircuitwasdonebyinitiallyplacingdesignkitelementsintheschematic,thenusingtheLayout>PlaceComponentsFromSchemToLayoutcommandtomanuallyplacethecomponentsintothelayout.AfasteralternativeistheLayout>Generate/UpdateLayoutcommand,whichwillautomaticallyplacealloftheschematiccomponentsintothelayout.Aftercomponentswereplacedinthelayout,traceswereinserted(Insert>Tracecommand,orselectingthetoolbaricon)toconnectthemtogether.
LineCalcwasusedtodeterminethata70μmwidthwasneededfora50Ohmlineon100μmGaAs,andthata20-μmwidelineisabout77Ohms.ForRFinterconnects,thesetransmissionlinelengthsarekeptasshortaspossibletominimizeparasitics.
Inthelayout,viaswereinsertedwhereitwasnecessarytochangefromonemetallayertoanother.ThesewerethenplacedintheschematicviatheSchematic>PlaceComponentsFromLayoutToSchemcommand.
TheTools>CheckRepresentationcommand,showninFigure32,isquiteusefulforverify-ingthatallcomponentshavebeenplacedinboththelayoutandtheschematicandthattheirparametervaluesallmatch.
ErrorsarereportedasshowninFigure33.Whenplacingthesubcircuitsinthetop-levellayout,theEdit>EditInPlace>PushIntocommandisquiteusefulforaligningthepinsofdifferentsubcircuitsforfinalcon-nectionsaswellasforadjustingtheplacementofcomponentstoeliminateoverlapsandminimizewastedspace.
Figure32.Checkrepresentationdialogbox.
Figure33.Checkrepresentationerrordisplay.
AninitiallayoutofthecompleteamplifierisshowninBalancedLumpedAmplayout,
Figure34.Sincetheeffectsoftransmissionlineshavenotbeenincludedinthesimulationsyet,itisexpectedthatsomeadjustmentstothislayoutwillbenecessary.
Modelingtransmissionlineeffects–convertingtracestotransmissionlineelements
Toincludetheeffectsoftransmissionlines,thetracesinthelayout(whicharesimulatedasshortcircuits)mustbeconvertedtotransmissionlineelements.Todothis,acopyofeachsubcircuitwascreated,addingthesuffix“wTLs”tothedesignname(althoughthisisnotnecessary,itmakesiteasiertocomparethecircuitperformancewithandwithoutincludingtransmissionlineeffects.)AnMSUBcomponentforeachmetallayeronwhichtransmissionlineeffectsweretobeincludedwasplacedintotheschematic.EachMSUBcomponentwouldhaveadifferentmetallayernameforitsCond1parameter.Inthisdesign,allRFtracesareoneitherMetal1orMetal2,sotwoMSUBcompo-nentshavebeeninserted.(IftracesonMetal3aretobemodeledastransmissionlines,also,thenathirdMSUBcomponentisnecessary.)Somerealdesignkitsmighthavepre-definedMSUBcomponents;oneforeachmetallayer.
Ineachlayout,toconvertalltracesonaparticularlayer,doaSelect>SelectAllOnLayer...ThendoanEdit>Path/Trace/Wire>ConvertTraces...IntheTraceControldialogbox,showninFigure35,setConvertTracetoTransmissionlineelementsandentertheMSUBElementID(fromtheschematic)underSubstrateReferences.Whenthiscommandisexecuted,thetracesinthelayoutareconvertedtotransmission
lineelements.
Figure34.TheBalancedLumpedAmplayout.
Figure35.Tracecontroldialogbox.
Figure36showsasectionofalayoutaftertraceshavebeenconvertedtotransmissionlines.ThesetransmissionlinescanthenbeplacedintheschematicviatheSchematic
PlaceComponentsFromLayoutToSchemcommand.Thereareafewwaystodothis.First,youcanmanuallyplacethecomponentstocreateaschematicthatlookssimilartoyourlayout,anditenablesyoutofindkeytransmissionlinesandtesttheeffectsofvaryingthemonperformance.Anotheroptionistouselayoutlook-alikecomponentstocreateschematicsymbolsthatlookthesameasthepassivepartsofyourlayout.Withthismethod,aMomentumsimulationisautomaticallylaunchedtogenerateamodelforeachlook-alikecomponent,buttheMomentumsimulationonlyhastoberunonce,aslongasyoudon’tmodifythelayout.Thisshouldgivethemostaccuratesimulationresults.
Alternatively,youcanskipplacingthetransmissionlinecomponentsontotheschematicandinsteadselectSimulatefromLayoutintheDesignParametersdialog(File>DesignParameters),asshowninFigure37.
Figure36.Partofalayoutafterconvertingtracestotransmissionlines.
Figure37.DesignParametersdialogbox,allowingyoutospecifythatthelayoutrepresentationbeusedforthesimulation.
Compensatingfortransmissionline
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年財務分析師考試試題及答案
- 2025年國際商務談判技巧測試卷及答案
- 2025年鋼筋混凝土結構設計考試試卷及答案
- 物資運載儲存管理制度
- 物資采購公示管理制度
- 特殊停電用戶管理制度
- 特殊服飾日常管理制度
- 特殊群體超市管理制度
- 特種人員作業管理制度
- 特種作業電工管理制度
- 醫院培訓課件:《便攜式血糖儀臨床操作和質量管理》
- 充電樁工程施工技術方案
- 《冠心病的規范化診》課件
- 2025年圍產期保健工作計劃
- 急性心肌梗死健康教育課件
- 2024年教師資格考試小學面試科學試題及答案指導
- (一模)寧波市2024學年第一學期高考模擬考試 數學試卷(含答案)
- 2024年迪慶道路旅客運輸知識考試題庫
- 公司事故隱患內部報告獎勵機制
- 上海市市轄區(2024年-2025年小學四年級語文)統編版期末考試((上下)學期)試卷及答案
- 小超市食品安全管理制度
評論
0/150
提交評論