ADS-MMIC AMPLIFIER原版完整文件_第1頁
ADS-MMIC AMPLIFIER原版完整文件_第2頁
ADS-MMIC AMPLIFIER原版完整文件_第3頁
ADS-MMIC AMPLIFIER原版完整文件_第4頁
ADS-MMIC AMPLIFIER原版完整文件_第5頁
已閱讀5頁,還剩35頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

UsingAdvancedDesignSystemtoDesignanMMICAmplifier

ApplicationNoteNumber1462

AgilentEEsofEDA

PAGE

10

PAGE

11

Contents

Introduction 3

Two-StageMMICAmplifierDesign 5

Branch-LineCouplerDesign 16

Conclusion 29

Appendixes

AppendixA–UsingtheAdvancedModelComposer

toCreateaLibraryofInductorModels 30

AppendixB–RunningtheDesignRuleChecker 37

GeneralReferencesonBalancedAmplifiers

"MicrowavesandRFCircuits:Analysis,Synthesi,s"MaxW.Medley,ArtechHouse,1993,pp509-541.

"FoundationsforMicrostripCirc,u"itDesign

T.C.Edwards,JohnWileyandSons,1981,pp.242-244.

andDesigns

Introduction

TherearemanydesignstepsrequiredforthedevelopmentandmanufactureofMMICcircuits,asillustratedintheMMICDesignFlow.AdvancedDesignSystem(ADS)isacentralpartofthecompleteMMICdesignflow,andisusedthroughoutthisprocess.Thisapplicationnoteillustrates,throughthedesignofanMMICamplifier,severalofthecommonproblemsfacedindesigning,simulating,andproducingaphysicallayoutofanMMICcircuit,aswellasthevalidationstepsthatareneededtoverifythatthephysicallayoutstillproducesthedesiredresult.ItisbeyondthescopeofthisnotetodescribeallpossibledesignspecificationsforanMMICcircuit,butitdoesincludeenoughspecificationanddesignstepstoaddressmanycommondesignchallenges.

Thefollowingsectionsgiveastep-bystepdescriptionofa0.5-Watt,10-GHz,narrow-bandamplifierona100-μmGaAssubstrate.Theexamplefilesthatareusedhere($HPEESOF_DIR/examples/MW_Ckts/MMIC_Amp_prjandMMIC_AmpEM_Sims_prj)

areincludedwiththeADS2003Asoftware.Designanddatadisplayfilenamesfromtheexamplesarereferencedthroughout.

TheseexampledesignsusecomponentsfromagenericdesignkitthatisprovidedwithADS2003A($HPEESOF_DIR/examples/DesignKit/DemoKit.)Themodelsforthesecomponentsdonotcorrespondtoanyspecificfoundryprocess,butarerepresentativeofdesignkitsavailablefrommanyfoundries.

Althoughthedevelopmentofthegenericdesignkitisoutsidethescopeofthisapplicationnote,itisdocumentedintheADS2003Amanual,titledDesignKitDevelopment.Thismanualprovidesinstructionsthatguidefoundriesindevelopingtheirowndesignkits.

Theamplifierdesignprocessdependsonanumberoffactors,includingdesired

specifications,availabilityofdevicemodels,designerpreference,andmore.Thisappli-cationnotedescribesoneofmanypotentialsequences.Weassumethattwostagesofamplificationwillberequired:anoutputstageforpowerandaninputstagetoattainsufficientgain.Thedesignisabalancedamplifier,consistingoftwoparallel,two-stageamplifiers,withbranch-linecouplersattheinputandoutputimplementedaslumpedelementequivalentcircuits,tosplitthesignalattheinputandrecombineitat

theoutputafteramplification.

Figure1showsablockdiagramofthebalancedamplifiertopology.Figure2outlineshowtheimpedancestopresenttothedeviceswerechosen.

Thedesignflowbeginswithseveralsimulationstepsandproceedswithphysicaldesignsteps,withsomesimulationsforverificationofthephysicaldesign.Threemaindesigntasksarerequiredtocompletetheamplifier:designofthefirst-stage(preamplifier),designofthesecondstage(poweramplifier),anddesignofthe

branch-linecouplers.

1_0

Input

0.707_0

3-dB

coupler

3-dB

coupler

0.707_90

Output

Inputmatching

1stFETwith

stabilization

Interstagematching

2nd Output

FET matching

Figure1.Balancedamplifierblockdiagram,utilizingtwo,two-stageamplifiersinparallel.

(a)

(d)

1stFETwith

stabilization

2ndFET

(b)

(c)

Figure2.Choosingimpedances.(a)ChoosesourceZforminimumnoisefigure,aslongasgainremainsreasonable.(b)ChooseloadZforconjugatematching,afterchoosingsourceZ(althoughaslightmismatchwasfoundtogiveahigher1-dBgaincompressionoutputpower).(c)ChoosesourceZforconjugatematching,afterchoosingloadZ.(d)ChooseloadZformaximumpowerdelivered.

Two-StageMMICAmplifierDesign

Thissectionoutlinesthegeneralstepsfortwo-stageMMICamplifierdesign.

Selectanactivedevice.

Thiswilldependonthespecificationsyouareattemptingtomeet(suchasfrequency,power,andnoise),andthedevicesofferedbyaparticularfoundry.TheDemoKithasonlyonedevice,aHEMT(highelectronmobilitytransistor),soaselectionprocessisnotrequired.

Idealbias–first-stage

Chooseabiaspointtomaximizethetransconductance,Gm,whichshouldalsomaximizethegainofthefirst-stagedevice.TheFET_Gm_Calcsschematic,showninFigure3,simulatestheI-VcurvesofthedeviceandcalculatesGmateachbiaspointasafunctionoftheslopeoftheIDS-versus-VGScurve.

TheplotinFigure4indicatesthatbiasingVGStoabout–0.15VshouldmaximizeGm.TheAmplifierDesignGuidehasanupdatedversionofthissimulationsetup,underDesignGuide>Amplifier>DCandBiasPointSimulations>FETI-VCurves,ClassAPower,Eff.,Load,Gmvs.Bias,thatcalculatesGmversusDCbiaspoint,usinganACsimulationatonefrequencytodetermineGm.

Figure3.TheFET_Gm_Calcsschematic,forsimulatingadevice’stransconductanceversusbias.

Figure4.Plotofdraincurrent,IDS,versusgatevoltage,VGS,andtransconductance,Gm.

Impedancematchingwithidealelements–first-stage

Determinetheoptimalsourceandloadreflectioncoefficientstopresenttothefirst-stagedevice,basedonnoisefigureandgain.Ifnoiseisnotimportant,thenjustdesignforgain.ThesimulationsetupfromtheAmplifierDesignGuide(fromaschematic,DesignGuide>Amplifier>DCandBiasPointSimulations>FETNoiseFig.,S-Params,Gain,Stability,andCirclesvs.Bias)isshowninFigure5.

Inthissetup,thegateanddrainvoltagesareswept,andtheS-parametersandnoiseparametersofthefirststagedevicearesimulatedat10GHz,ateachbiaspoint.Thecorrespondingdatadisplayshowsnoise,gain,andstabilitycircles,whichareallupdated,dependingonthebiaspointyouselectwithamarker,asshowninFigure6.

Abouta1-dBnoisefigureand>16dBofgainshouldbeachievable,butthedeviceispotentiallyunstable,asindicated

bythesourcestabilitycirclebeingwell

withintheunitSmithchart. Figure5.TheFET_SP_NF_Match_Circschematic,forsimulatingadevice’sS-parameters,gain,noise

figure,andstabilityversusbias.

Figure6.Thegain,noise,andstabilitycirclesareplottedforthebiaspointselectedbymarkermBiasPt.

Attainingstabilitywithidealelements–first-stage

Feedbackelementsareaddedbetweenthegateandgroundandbetweenthegateanddrainofthefirst-stageFETtoimprovestability.OptimizethestabilitycircuitsusingtheGain_and_Stab_optschematicfromtheAmplifierDesignGuide(fromaschematic,DesignGuide>Amplifier>S-ParameterSimulations>FeedbackNetworkOptimizationtoAttainStability),asshowninFigure7.

Thissimulationincludesgoalstoforcethegeometricsourceandloadstabilityfactors,mu_sourceandmu_load,respectively,tobe>1overabroadfrequencyrange.[Ref.M.L.Edwardsand

J.H.Sinsky,"Anewcriterionforlinear2-portstabilityusinggeometricallyderivedparameters",IEEETransactionsonMicrowaveTheoryandTechniques,Vol.40,No.12,pp.2303-2311,Dec.1992.]

Ifthesestabilityfactorsare>1,thenneitherthesourcenorloadstabilitycircleintersectstheunitSmithchart.

Minimumnoisefigureandgainareincludedasoptimizationgoals,otherwiseperformancemightbedegradedtoomuchtoattainstability.Theresults,showninFigure8,showgoodstabilityperformanceandreasonablygoodgainandminimumnoisefigure,butwithideallumpedelements.

Figure7.OptimizationoffeedbackandshuntR,L,andCvaluestoattainstabilitywithoutdegradingnoisefigureandgaintoomuch.

Figure8.Gainandstabilityoptimizationresults.

Replaceidealelementswithdesignkitelements–first-stageReplacingtheidealelementsinthestabilizationnetworkwithdesignkitelementsshowsadegradationinstability.Werunadiscrete-valueoptimizationtoadjustthedesignkitelementstoattainbetterstability.Discrete-valueoptimizationisnecessaryifsomeoftheparameterstobeoptimizedmayhaveonlydiscretevalues,suchasthenumberofturnsofaspiralinductor.TheresultoftheoptimizationisshowninFigure9.

ToimprovestabilitynearDC,weaddeda10-Ohmresistorinserieswiththeinductorbiasingthegateofthedevice,atalaterstepinthedesign.Discrete-valueoptimizationcanbequitetime-consuming,sinceitcarriesoutanexhaustivesearchofallpossiblecombinationsofparametervalues.Itisrecommendedtofirstrunacontinuousoptimizationtogetidealelementvaluesasastartingpoint,andthenrunadiscrete-valueoptimization,allowingtheparametervaluestovaryoveronlyalimitedrange.Certaincontinuousoptimizationtypes(mainlyrandomanditsvariations)willhandlebothcontinuousanddiscreteoptimizablevariables.

Impedancematching–first-stagewithstabilizationnetworkDeterminetheoptimalsourceandloadimpedancestopresenttothestabilizedFET,viaS-parameterandnoisefiguresimulations,usingtheSP_NF_GainMatchKschematicfromtheAmplifierDesignGuide(fromtheschematicDesignGuide>Amplifier>S-ParameterSimulations>S-Params,Gain,NF,Stability,GroupDelayvs.

SweptParameters,showninFigure10).

Figure9.Discretevalueoptimizationresults,usingcomponentsfromtheDemoKit.

Figure10.Simulationtodeterminetheoptimalsourceandloadimpedancesforgainorminimumnoisefigureforthefirststagedevicewithstabilizationnetwork.

Thedatadisplay,showninFigure11,showsthatwithasourceimpedanceof21.3+j*3.7ohms,thenoisefigureisabout2.0dB.Withthissourceimpedance,thecorrespondingoptimalloadimpedanceis65.1+j*38.5ohms,whichshouldgiveatransducerpowergainof13.1dB.Itwaslaterdiscoveredexperimentallythatgeneratingaload

impedanceof39.5+j*52.9ohmsgivesahigherone-dBgaincompressionoutputpowerforthetwo-stageamplifier,attheexpenseoflowergain,sothisimpedancewasusedinstead.Ifgainismoreimportantthannoise,thenasourceimpedancetomaximizegaincouldbechosen.

Loadpull–secondstagedeviceForthesecondstagewewanttogeneratemoreoutputpower,soweexperimentwiththedevicesize.Adevicesizefourtimesaslargeas

thefirststagedevicewasselected,althoughalargerdeviceshouldgivemoreoutputpower.Aloadpullsimulation,HB1Tone_LoadPullMagPh,copiedfromtheexamples/RF_Board/LoadPull_prj,showed26.7dBmpowerdelivered,withaloadof7.76+j*9.7ohms,asshowninFigure12.(Additionalloadpullutilitiesareavailableintheloadpullapplication,underDesignGuide>Loadpull,fromaschematicwindow.)

Figure11.Gainandnoisecirclesandoptimalsourceandloadimpedancesforminimumnoisefigure.

Figure12.Loadpullsimulationresults.

Sourcepull–secondstage

Asourcepullsimulation,HB1Tone_SourcePull,fromtheAmplifierDesignGuide,indicatesthatthepowerdeliveredtotheloaddoesnotdependmuchonthesourceimpedance.Sotheinterstagematchingnetworkisdesignedtoprovidethecomplexconjugateasthesourceimpedancetopresenttothesecond-stageFET,whilethisFETisterminatedintheoptimalloadimpedancedeterminedfromtheload-pullsimulation.

Designingtheinputmatchingnetwork

Therearethreematchingnetworkstobedesigned:theinputtothefirststage,theinterstagebetweenthefirstandsecondstage,andtheoutputofthesecondstage.Thingstoconsiderinchoosingthesenetworksincludethesizeofthepassiveelements,incorporatingDCblockingcapacitors,andmakingsomeofthenetworkshigh-passandotherslow-pass,sotheoverallresponseisband-pass.

Becauseoftherelativelylowoperatingfrequency,distributed-elementmatchingwouldrequiretoomuchspace,soweuselumpedelementsinstead.Becausethisimpedancematchingisatasinglefrequencyonly,two-element,lumpedmatchingmayberealizedquitesimply.

ThePassiveCircuitDesignGuidewasusedtogenerateasimple,lumped-elementmatchingnetworktogeneratethedesiredsourceimpedance,asshowninFigure13,andtheresultingnetworkisasimpleshunt-C,series-Lnetwork.(NotethatthissamematchcanbefoundintheMatchingutilityortheSmithChartutility.)

Figure13.Theinputmatchingnetwork.

Figure14.Simulatingtheimpedanceofabiasnetwork.

Figure15.Biasnetworkimpedancesimulationresults.

Replaceidealelementswithdesignkitelements

Thenetworkwithidealelementsmustbereplacedwithdesignkitelements,whichhaveparasitics.Theparasiticsvarywiththesizeofeachcomponent.

YouwanttheDC-biasinductortobelargeenoughtoprovideahigh

impedanceat10GHz,butnotsolargethatitsparasiticcapacitancetogroundcausesaself-resonancetooccurbelowthisfrequency.Figure14showsthesetupforsimulationoftheimpedanceofasimplebiasnetwork.

TheresultsareshowninFigure15.

TheinputmatchingcircuitwithdesignkitelementsandaDCbiasnetworkisshowninFigure16.

ThecorrespondinglayoutisshowninFigure17.Sincethiscircuitisusedtobiasthegateofthefirst-stagedevice,thereshouldbelittleornobiascurrentdrawnfromthesupply,soaresistorcouldbeusedinsteadoftheinductor.ThishastheadditionalbenefitofsavingGaAsrealestate.

Figure16.Inputmatchingcircuitschematic,withdesignkitelementsandaDCbiasnetwork.

Figure17.Correspondinginputmatchingcircuitlayout,withdesignkitelementsandaDCbiasnetwork.

Interstagematch

Theinterstagenetworktransformstheinputimpedanceofthesecond-stagedevicetotheoptimalloadimpedancetopresenttothefirst-stagedevice.TheMatchingutilitywasusedtodesign

thesimpleshunt-C,series-Lmatchingnetwork(orthePassiveCircuitDesignGuidecouldbeused).TheInterstageMatch_wBiasnetworkisshowninFigure18.ItshowstheinterstagematchingnetworkincludingdesignkitelementsandDCbiasinductors.

Thelayout,showninFigure19,hasthedrainbiasinductorofthefirststageveryclosetothegatebiasinductorofthesecondstage,socouplingislikelytooccur.Theamountofcouplingand

towhatdegreeitdegradescircuitperformancecanbedeterminedfromaMomentum(electromagnetic)

simulation,althoughwedidnotperformoneforthisexample.

Figure18.Theinterstagematchingnetwork,includingdesignkitelementsandDCbiasinductors.

Figure19.Interstagematchingnetworklayout.

Outputmatch–secondstageTheoutputmatchingnetworkisusedtotransform50Ohmstotheoptimalloadimpedance(7.76+j*9.7Ohms)topresenttotheoutputofthesecondstagedevice.Anideal,shunt-L,series-Cnetworkiscreatedusingthe

OutputMatch1schematicintheexample,whichcamefromtheAmplifierDesignGuide(anotheroptionforgeneratingimpedancematchingnetworks).TheOutputMatch_wBiasschematic(intheexamplefile,andnotshownhere)usesdesignkitelementsinsteadofidealelements,andincludesaDCbiasinductor.

Interstagematchandstabilityverification–S-probe

Thenextstepistoverifythatwhenweconnectthematchingnetworks,inputdevicewithitsstabilizationnetwork,andoutputdevicethatwearegeneratingthedesiredsourceandloadimpedancesateachdevice.Also,weneedtoverifythatthestabilityconditionsaresatisfiedattheinputandoutputplanesofeachdevice.AnS-probeisusedtodeterminethesourceandloadimpedancesattheinputandoutputofeachdevice.

TheS-probeisanelementthatyoucaninsertanywhereintoacircuitwithoutloadingit.Itwilldeterminetheimped-ancesandreflectioncoefficientslookinginbothdirections.Fromthesereflectioncoefficients,wecandeterminewhetherthesmall-signalstabilityconditionsaresatisfiedornot.TheS-probepairschematicusedinthisexampleisshowninFigure20.

Inputmatchverification

TheTwoStgAmpInZ_TB,showninFigure21,determinesthesourceandloadreflectioncoefficientspresentedtothefirststagedevice.

Figure20.S-probepairschematic.

Figure21.Determiningtheimpedanceslookingbothdirections,attheinputandoutputofthefirststageFET.

ThedatadisplayinFigure22showsthattheseimpedancesareclosetothedesiredvaluesat10GHz,andthatthestabilityconditionsaresatisfiedfrom

10MHzto20GHz.

OutputmatchverificationTwoStgAmpOutZ_TB(showninFigure23)determinesthesourceandloadreflectioncoefficientspresentedtotheoutputdevice.

Figure22.Sourceandloadimpedancesclosetothedesiredvaluesarebeinggeneratedbythematchingnetworks.

Figure23.Two-stageamplifieroutputschematic.

ThedatadisplayinFigure24showsthattheloadimpedanceisclosetothedesiredvalueat10GHz,andthatthestabilityconditionsaresatisfiedfrom10MHzto20GHz.(Itisnecessarytocheckstabilityconditionsoverabroadfrequencyrange,beyondtheoperatingbandofinterest,tocheckforundesiredpotentialoscillations.)Also,thesource

impedancepresentedtotheinputofthedeviceisclosetothecomplexconjugateofthedevice’sinputimpedance

at10GHz.

Two-stageamplifiergaincompression

Next,aswept-powersimulationofthetwo-stageamplifierwithmatchingnetworkswascarriedouttodeterminethemaximumoutputpowerthatcouldbesupplied,power-addedefficiency,1-dBcompressionpoint,etc.ThissimulationisTwoStgAmp_TB,asshowninFigure25,andindicatesamaximumoutputpowerofabout

26.6dBmandanoutputpoweratthe1-dBgaincompressionpointofabout25dBm.ThissimulationsetupanddatadisplayarefromtheAmplifier

DesignGuide(DesignGuide>Amplifier>1-ToneNonlinearSimulations>Spectrum,Gain,HarmonicDistortionvs.Power(w/PAE)).TherearemanyothersimulationsetupsintheAmplifierDesignGuide,soyoucouldlookatthingslikeintermodulationdistortion,1-dB

gaincompression,frequencyresponse,andresponsesversussweptparametersaswell.

Figure24.Sourceandloadimpedancesclosetothedesiredvaluesarebeinggeneratedforthesecond-stagedevice,andthestabilityconditionsaresatisfied.

Figure25.Simulatingthegaincompressionandpower-addedefficiencyofthetwo-stageamplifier.

Branch-LineCouplerDesign

Branch-linecouplersareusedattheinputandoutput,tosplitthesignaltobesentthroughtwoparallel,identicaltwo-stageamplifiersandthentorecombinethesignalsattheoutput.Oneoftheadvantagesofthisapproachisthattheinputandoutputmatchesoftheoverallamplifieraregood,eventhoughthetwo-stageamplifiermay

bemismatchedattheinputoroutput.Also,youpotentiallycanobtain3dBhigheroutputpowerthanasingleamplifiercouldprovidebyitself.

Branch-linecouplersmaybeimplementedviaquarter-wavelengthtransmissionlinesasshowninFigure26.Butat10GHz,theselineswouldbe2-3millimeterslong.Soinstead,thetransmissionlinesarereplacedbyC-L-Cpinetworks,asshowninFigure26.Thevaluesfortheinductorsandcapacitorsaregivenbytheequationsinthefigure.

ExactvaluesfortheLsandCsarecomputedontheBLC_LumpedIdealschematic,showninFigure27.(Itisusefultohaveanidealbranch-linecoupler,becauseitcanbeusedtodeterminethebestperformancethattheamplifieriscapableofachieving,andtodeterminewhethertimeandeffortshouldbeexpendedonimprovingaphysicalbranch-linecouplerdesignoronthetwo-stageamplifier.)TheseLsandCswereconvertedtodesignkitcomponents,with

aresultingdegradationinperformance.

Figure26.TheBranch-linecoupler,implementedastransmissionlines,canbeimplementedusinga-networkequivalentcircuitforeachl/4section,usingtheequationsshown[Reference,"FoundationsforMicrostripCircuitDesign,"T.C.Edwards,JohnWileyandSons,1981,pg.10.]

Figure27.Abranch-linecouplerimplementedusingideal,lumpedelements.

Adiscrete-valueoptimizationwasrun(setupisBranchLineCoupDiscOpt)asshowninFigure28,toimprovetheper-formanceofthebranch-linecouplercircuitimplementedwithdesignkitcomponents.

ThesimulationresultsareshownintheBLC_Lumped_TBdatadisplay,asshowninFigure29.

Figure28.Setupforoptimizingthebranch-linecouplerperformance.Theoptimizablevariablesaredefinedinthesubcircuit,asshowninFigure30.

Figure29.Optimizedbranch-linecouplerperformance.

TheoptimizedparametervaluesareshownontheBLC_Lumpedschematic,showninFigure30.TheBLC_LumpedBk_to_Bk_TBisusedtodeterminetheinsertionlossaswellastheoverallfrequencyresponseoftwobranch-linecouplersconnectedbacktoback.Ideally,thislosswouldbe0dB,buttheactuallosswillreducetheideal

3-dBincreaseinoutputpowerthatthisbalancedamplifierconfigurationwouldachieveifthesewerelossless.Youcancompensateforlossduetotheinputbranch-linecouplerbyincreasingtheinputsignalpower,butyoucannotmakeupforthelossduetotheoutputcoupler.

Preliminarybalancedamplifierperformance(withoutincludinginterconnectparasitics)

Combiningthetwo-stageamplifiersandlumped-elementbranch-linecouplerstogether,wegetabalancedamplifier.ThisissimulatedinBalancedLumpedAmp_TB,andshowninFigure31.ThisisthesamesimulationsetupfromtheAmplifierDesignGuidethatwasusedtoevaluatethetwo-stageamplifier.Theresultsshowasaturatedoutputpowerofabout29dBm,andanoutputpoweratthe1-dBgaincompressionpointofabout26.5dBm.

Theseresultsarewithdesignkitcomponents,butwithoutincludinganytransmissionlineeffects.

Figure30.Optimizedbranch-linecouplerparametervalues.

Figure31.Simulatingthegain,power,andpower-addedefficiencyofthepreliminarybalancedamplifier.

Creatingthelayout

Thelayoutofeachsubcircuitwasdonebyinitiallyplacingdesignkitelementsintheschematic,thenusingtheLayout>PlaceComponentsFromSchemToLayoutcommandtomanuallyplacethecomponentsintothelayout.AfasteralternativeistheLayout>Generate/UpdateLayoutcommand,whichwillautomaticallyplacealloftheschematiccomponentsintothelayout.Aftercomponentswereplacedinthelayout,traceswereinserted(Insert>Tracecommand,orselectingthetoolbaricon)toconnectthemtogether.

LineCalcwasusedtodeterminethata70μmwidthwasneededfora50Ohmlineon100μmGaAs,andthata20-μmwidelineisabout77Ohms.ForRFinterconnects,thesetransmissionlinelengthsarekeptasshortaspossibletominimizeparasitics.

Inthelayout,viaswereinsertedwhereitwasnecessarytochangefromonemetallayertoanother.ThesewerethenplacedintheschematicviatheSchematic>PlaceComponentsFromLayoutToSchemcommand.

TheTools>CheckRepresentationcommand,showninFigure32,isquiteusefulforverify-ingthatallcomponentshavebeenplacedinboththelayoutandtheschematicandthattheirparametervaluesallmatch.

ErrorsarereportedasshowninFigure33.Whenplacingthesubcircuitsinthetop-levellayout,theEdit>EditInPlace>PushIntocommandisquiteusefulforaligningthepinsofdifferentsubcircuitsforfinalcon-nectionsaswellasforadjustingtheplacementofcomponentstoeliminateoverlapsandminimizewastedspace.

Figure32.Checkrepresentationdialogbox.

Figure33.Checkrepresentationerrordisplay.

AninitiallayoutofthecompleteamplifierisshowninBalancedLumpedAmplayout,

Figure34.Sincetheeffectsoftransmissionlineshavenotbeenincludedinthesimulationsyet,itisexpectedthatsomeadjustmentstothislayoutwillbenecessary.

Modelingtransmissionlineeffects–convertingtracestotransmissionlineelements

Toincludetheeffectsoftransmissionlines,thetracesinthelayout(whicharesimulatedasshortcircuits)mustbeconvertedtotransmissionlineelements.Todothis,acopyofeachsubcircuitwascreated,addingthesuffix“wTLs”tothedesignname(althoughthisisnotnecessary,itmakesiteasiertocomparethecircuitperformancewithandwithoutincludingtransmissionlineeffects.)AnMSUBcomponentforeachmetallayeronwhichtransmissionlineeffectsweretobeincludedwasplacedintotheschematic.EachMSUBcomponentwouldhaveadifferentmetallayernameforitsCond1parameter.Inthisdesign,allRFtracesareoneitherMetal1orMetal2,sotwoMSUBcompo-nentshavebeeninserted.(IftracesonMetal3aretobemodeledastransmissionlines,also,thenathirdMSUBcomponentisnecessary.)Somerealdesignkitsmighthavepre-definedMSUBcomponents;oneforeachmetallayer.

Ineachlayout,toconvertalltracesonaparticularlayer,doaSelect>SelectAllOnLayer...ThendoanEdit>Path/Trace/Wire>ConvertTraces...IntheTraceControldialogbox,showninFigure35,setConvertTracetoTransmissionlineelementsandentertheMSUBElementID(fromtheschematic)underSubstrateReferences.Whenthiscommandisexecuted,thetracesinthelayoutareconvertedtotransmission

lineelements.

Figure34.TheBalancedLumpedAmplayout.

Figure35.Tracecontroldialogbox.

Figure36showsasectionofalayoutaftertraceshavebeenconvertedtotransmissionlines.ThesetransmissionlinescanthenbeplacedintheschematicviatheSchematic

PlaceComponentsFromLayoutToSchemcommand.Thereareafewwaystodothis.First,youcanmanuallyplacethecomponentstocreateaschematicthatlookssimilartoyourlayout,anditenablesyoutofindkeytransmissionlinesandtesttheeffectsofvaryingthemonperformance.Anotheroptionistouselayoutlook-alikecomponentstocreateschematicsymbolsthatlookthesameasthepassivepartsofyourlayout.Withthismethod,aMomentumsimulationisautomaticallylaunchedtogenerateamodelforeachlook-alikecomponent,buttheMomentumsimulationonlyhastoberunonce,aslongasyoudon’tmodifythelayout.Thisshouldgivethemostaccuratesimulationresults.

Alternatively,youcanskipplacingthetransmissionlinecomponentsontotheschematicandinsteadselectSimulatefromLayoutintheDesignParametersdialog(File>DesignParameters),asshowninFigure37.

Figure36.Partofalayoutafterconvertingtracestotransmissionlines.

Figure37.DesignParametersdialogbox,allowingyoutospecifythatthelayoutrepresentationbeusedforthesimulation.

Compensatingfortransmissionline

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論