遼寧省錦州黑山縣2024屆中考聯考數學試題含解析_第1頁
遼寧省錦州黑山縣2024屆中考聯考數學試題含解析_第2頁
遼寧省錦州黑山縣2024屆中考聯考數學試題含解析_第3頁
遼寧省錦州黑山縣2024屆中考聯考數學試題含解析_第4頁
遼寧省錦州黑山縣2024屆中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省錦州黑山縣2024年中考聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.有個零件(正方體中間挖去一個圓柱形孔)如圖放置,它的主視圖是A. B. C. D.2.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個3.△ABC在正方形網格中的位置如圖所示,則cosB的值為()A. B. C. D.24.□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF5.下列各式計算正確的是()A.a4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a12÷a3=a46.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.7.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.258.某校為了了解七年級女同學的800米跑步情況,隨機抽取部分女同學進行800米跑測試,按照成績分為優秀、良好、合格、不合格四個等級,繪制了如圖所示統計圖.該校七年級有400名女生,則估計800米跑不合格的約有()A.2人 B.16人C.20人 D.40人9.如圖,矩形紙片中,,,將沿折疊,使點落在點處,交于點,則的長等于()A. B. C. D.10.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π二、填空題(共7小題,每小題3分,滿分21分)11.大連市內與莊河兩地之間的距離是160千米,若汽車以平均每小時80千米的速度從大連市內開往莊河,則汽車距莊河的路程y(千米)與行駛的時間x(小時)之間的函數關系式為_____.12.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發時間x(時)的函數的圖象,請問當小明到達B地時,小亮距離A地_____千米.13.的相反數是_____.14.如圖,在平面直角坐標系中,菱形OABC的面積為12,點B在y軸上,點C在反比例函數y=的圖象上,則k的值為________.15.已知,那么__.16.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出2個球,都是黃球的概率為.17.高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數量記錄如下:收費出口編號通過小客車數量(輛)260330300360240在五個收費出口中,每20分鐘通過小客車數量最多的一個出口的編號是___________.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,19.(5分)如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F,G.(1)求點D沿三條圓弧運動到點G所經過的路線長;(2)判斷線段GB與DF的長度關系,并說明理由.20.(8分)解不等式組,并將它的解集在數軸上表示出來.21.(10分)在下列的網格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;(3)根據(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.22.(10分)如圖,大樓底右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上).已知AB=80m,DE=10m,求障礙物B,C兩點間的距離.(結果保留根號)23.(12分)如圖,在平面直角坐標系中,△AOB的三個頂點坐標分別為A(1,0),O(0,0),B(2,2).以點O為旋轉中心,將△AOB逆時針旋轉90°,得到△A1OB1.畫出△A1OB1;直接寫出點A1和點B1的坐標;求線段OB1的長度.24.(14分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網格圖中有A、B兩點,請在答題卷給出的兩個網格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

根據主視圖的定義判斷即可.【題目詳解】解:從正面看一個正方形被分成三部分,兩條分別是虛線,故正確.故選:.【題目點撥】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關鍵.2、C【解題分析】試題分析:根據軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據此對圖中的圖形進行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.3、A【解題分析】

解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.4、B【解題分析】【分析】根據平行線的判定方法結合已知條件逐項進行分析即可得.【題目詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【題目點撥】本題考查了平行四邊形的性質與判定,熟練掌握平行四邊形的判定定理與性質定理是解題的關鍵.5、C【解題分析】

根據同底數冪的乘法,可判斷A、B,根據冪的乘方,可判斷C,根據同底數冪的除法,可判斷D.【題目詳解】A.a4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a12÷a3=a9,故D錯誤.故選C.【題目點撥】本題考查了同底數冪的除法,同底數冪的除法底數不變指數相減是解題的關鍵.6、B【解題分析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.7、C【解題分析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.8、C【解題分析】

先求出800米跑不合格的百分率,再根據用樣本估計總體求出估值.【題目詳解】400×人.故選C.【題目點撥】考查了頻率分布直方圖,以及用樣本估計總體,關鍵是從上面可得到具體的值.9、B【解題分析】

由折疊的性質得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結論EF=DF;易得FC=FA,設FA=x,則FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到關于x的方程x2=42+(6-x)2,解方程求出x即可.【題目詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,

∴AE=AB,∠E=∠B=90°,

又∵四邊形ABCD為矩形,

∴AB=CD,

∴AE=DC,

而∠AFE=∠DFC,

∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),

∴EF=DF;

∵四邊形ABCD為矩形,

∴AD=BC=6,CD=AB=4,

∵Rt△AEF≌Rt△CDF,

∴FC=FA,

設FA=x,則FC=x,FD=6-x,

在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【題目點撥】考查了折疊的性質:折疊前后兩圖形全等,即對應角相等,對應邊相等.也考查了矩形的性質和三角形全等的判定與性質以及勾股定理.10、D【解題分析】

根據三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據此求解可得.【題目詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【題目點撥】本題主要考查由三視圖判斷幾何體,解題的關鍵是根據三視圖得出幾何體的形狀及圓柱體的有關計算.二、填空題(共7小題,每小題3分,滿分21分)11、y=160﹣80x(0≤x≤2)【解題分析】

根據汽車距莊河的路程y(千米)=原來兩地的距離﹣汽車行駛的距離,解答即可.【題目詳解】解:∵汽車的速度是平均每小時80千米,∴它行駛x小時走過的路程是80x,∴汽車距莊河的路程y=160﹣80x(0≤x≤2),故答案為:y=160﹣80x(0≤x≤2).【題目點撥】本題考查了根據實際問題確定一次函數的解析式,找到所求量的等量關系是解題的關鍵.12、1【解題分析】

根據題意設小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【題目詳解】設小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【題目點撥】此題考查一次函數的應用,解題關鍵在于列出方程組.13、【解題分析】

根據只有符號不同的兩個數互為相反數,可得答案.【題目詳解】的相反數是?.故答案為?.【題目點撥】本題考查的知識點是相反數,解題的關鍵是熟練的掌握相反數.14、-6【解題分析】因為四邊形OABC是菱形,所以對角線互相垂直平分,則點A和點C關于y軸對稱,點C在反比例函數上,設點C的坐標為(x,),則點A的坐標為(-x,),點B的坐標為(0,),因此AC=-2x,OB=,根據菱形的面積等于對角線乘積的一半得:,解得15、【解題分析】

根據比例的性質,設x=5a,則y=2a,代入原式即可求解.【題目詳解】解:∵,∴設x=5a,則y=2a,那么.故答案為:.【題目點撥】本題主要考查了比例的性質,根據比例式用同一個未知數得出的值進而求解是解題關鍵.16、【解題分析】

讓黃球的個數除以球的總個數即為所求的概率.【題目詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出2個球是黃球的概率是.

故答案為:.【題目點撥】本題考查了概率的基本計算,用到的知識點為:概率等于所求情況數與總情況數之比.17、B【解題分析】

利用同時開放其中的兩個安全出口,20分鐘所通過的小車的數量分析對比,能求出結果.【題目詳解】同時開放A、E兩個安全出口,與同時開放D、E兩個安全出口,20分鐘的通過數量發現得到D疏散乘客比A快;同理同時開放BC與CD進行對比,可知B疏散乘客比D快;同理同時開放BC與AB進行對比,可知C疏散乘客比A快;同理同時開放DE與CD進行對比,可知E疏散乘客比C快;同理同時開放AB與AE進行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【題目點撥】本題考查簡單的合理推理,考查推理論證能力等基礎知識,考查運用求解能力,考查函數與方程思想,是基礎題.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)EC=1.【解題分析】

(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質可推出∠F=∠BDE,再根據對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結論;(2)根據解直角三角形和等邊三角形的性質即可得到結論.【題目詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【題目點撥】本題主要考查等腰三角形的判定與性質、余角的性質、對頂角的性質等知識點,關鍵根據相關的性質定理,通過等量代換推出∠F=∠FDA,即可推出結論.19、(1)6π;(2)GB=DF,理由詳見解析.【解題分析】

(1)根據弧長公式l=nπr180【題目詳解】解:(1)∵AD=2,∠DAE=90°,

∴弧DE的長l1=90×π×2180=π,

同理弧EF的長l2=90×π×4180=2π,弧FG的長l3=90×π×6180=3π,

所以,點D運動到點G所經過的路線長l=l1+l2+l【題目點撥】本題考查弧長公式以及全等三角形的判定和性質,題目比較簡單,解題關鍵掌握是弧長公式.20、x≤1,解集表示在數軸上見解析【解題分析】

首先根據不等式的解法求解不等式,然后在數軸上表示出解集.【題目詳解】去分母,得:3x﹣2(x﹣1)≤3,去括號,得:3x﹣2x+2≤3,移項,得:3x﹣2x≤3﹣2,合并同類項,得:x≤1,將解集表示在數軸上如下:【題目點撥】本題考查了解一元一次不等式,解題的關鍵是掌握不等式的解法以及在數軸上表示不等式的解集.21、(1)作圖見解析;(2)如圖所示,點A的坐標為(0,1),點C的坐標為(-3,1);(3)如圖所示,點B2的坐標為(3,-5),點C2的坐標為(3,-1).【解題分析】

(1)分別作出點B個點C旋轉后的點,然后順次連接可以得到;(2)根據點B的坐標畫出平面直角坐標系;(3)分別作出點A、點B、點C關于原點對稱的點,然后順次連接可以得到.【題目詳解】(1)△A如圖所示;(2)如圖所示,A(0,1),C(﹣3,1);(3)△如圖所示,(3,﹣5),(3,﹣1).22、(70﹣10)m.【解題分析】

過點D作DF⊥AB于點F,過點C作CH⊥DF于點H.通過解得到DF的長度;通過解得到CE的長度,則【題目詳解】如圖,過點D作DF⊥AB于點F,過點C作CH⊥DF于點H.則DE=BF=CH=10m,在中,∵AF=80m?10m=70m,∴DF=AF=70m.在中,∵DE=10m,∴∴答:障礙物B,C兩點間的距離為23、(1)作圖見解析;(2)A1(0,1),點B1(﹣2,2).(3)【解題分析】

(1)按要求作圖.(2)由(1)得出坐標.(3)由圖觀察得到,再根據勾股定理得到長度.【題目詳解】解:(1)畫出△A1OB1,如圖.(2)點A1(0,1),點B1(﹣2,2).(3)OB1=OB==2.【題目點撥】本題主要考查的是繪圖、識圖、勾股定理等知識點,熟練掌握方法是本題的解題關鍵.24、(1)是;(2)見解析;(3)150°.【解題分析】

(1)由菱形的性質和等邊三角形的判定與性質即可得出結論;(2)根據題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論