福建省三明市永安市重點中學2024屆中考聯考數學試題含解析_第1頁
福建省三明市永安市重點中學2024屆中考聯考數學試題含解析_第2頁
福建省三明市永安市重點中學2024屆中考聯考數學試題含解析_第3頁
福建省三明市永安市重點中學2024屆中考聯考數學試題含解析_第4頁
福建省三明市永安市重點中學2024屆中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省三明市永安市重點中學2024學年中考聯考數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某校有35名同學參加眉山市的三蘇文化知識競賽,預賽分數各不相同,取前18名同學參加決賽.其中一名同學知道自己的分數后,要判斷自己能否進入決賽,只需要知道這35名同學分數的(

).A.眾數 B.中位數 C.平均數 D.方差2.如圖,AB∥CD,AD與BC相交于點O,若∠A=50°10′,∠COD=100°,則∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′3.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點O都落在直線MN上,直線MN∥AB,則點O是△ABC的()A.外心 B.內心 C.三條中線的交點 D.三條高的交點4.如圖,立體圖形的俯視圖是A. B. C. D.5.一次函數y=kx﹣1的圖象經過點P,且y的值隨x值的增大而增大,則點P的坐標可以為()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)6.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或07.二次函數y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<08.搶微信紅包成為節日期間人們最喜歡的活動之一.對某單位50名員工在春節期間所搶的紅包金額進行統計,并繪制成了統計圖.根據如圖提供的信息,紅包金額的眾數和中位數分別是()A.20,20 B.30,20 C.30,30 D.20,309.為了鍛煉學生身體素質,訓練定向越野技能,某校在一公園內舉行定向越野挑戰賽.路線圖如圖1所示,點E為矩形ABCD邊AD的中點,在矩形ABCD的四個頂點處都有定位儀,可監測運動員的越野進程,其中一位運動員P從點B出發,沿著B﹣E﹣D的路線勻速行進,到達點D.設運動員P的運動時間為t,到監測點的距離為y.現有y與t的函數關系的圖象大致如圖2所示,則這一信息的來源是()A.監測點A B.監測點B C.監測點C D.監測點D10.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a= B.a=2b C.a=b D.a=3b二、填空題(共7小題,每小題3分,滿分21分)11.比較大小:4(填入“>”或“<”號)12.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.13.如圖,中,∠,,的面積為,為邊上一動點(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.14.已知點P(1,2)關于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.15.若實數m、n在數軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)16.哈爾濱市某樓盤以每平方米10000元的均價對外銷售,經過連續兩次上調后,均價為每平方米12100元,則平均每次上調的百分率為_____.17.點(-1,a)、(-2,b)是拋物線上的兩個點,那么a和b的大小關系是a_______b(填“>”或“<”或“=”).三、解答題(共7小題,滿分69分)18.(10分)在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,連接PM、PB,設A、P兩點間的距離為xcm,PM+PB長度為ycm.小東根據學習函數的經驗,對函數y隨自變量x的變化而變化的規律進行了探究.下面是小東的探究過程,請補充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補全表格時相關數值保留一位小數)(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象.(3)結合畫出的函數圖象,解決問題:PM+PB的長度最小值約為______cm.19.(5分)為了傳承中華優秀傳統文化,市教育局決定開展“經典誦讀進校園”活動,某校團委組織八年級100名學生進行“經典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統計圖表.組別分數段頻次頻率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08請根據所給信息,解答以下問題:表中a=______,b=______;請計算扇形統計圖中B組對應扇形的圓心角的度數;已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.20.(8分)在一個不透明的口袋里裝有四個球,這四個球上分別標記數字﹣3、﹣1、0、2,除數字不同外,這四個球沒有任何區別.從中任取一球,求該球上標記的數字為正數的概率;從中任取兩球,將兩球上標記的數字分別記為x、y,求點(x,y)位于第二象限的概率.21.(10分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發,以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經過的路程為s.當β=45°時,若△APQ是“中邊三角形”,試求的值.22.(10分)如圖,菱形中,分別是邊的中點.求證:.23.(12分)某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.(1)求A、B兩種鋼筆每支各多少元?(2)若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數量少于B種鋼筆的數量,那么該文具店有哪幾種購買方案?(3)文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎上再購進一批B種鋼筆,漲價賣出,經統計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設文具店將新購進的B種鋼筆每支漲價a元(a為正整數),銷售這批鋼筆每月獲利W元,試求W與a之間的函數關系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?24.(14分)學習了正多邊形之后,小馬同學發現利用對稱、旋轉等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數式表示△BDQ的面積S△BDQ.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據中位數的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數及中位數之后的共有18個數,故只要知道自己的成績和中位數就可以知道是否進入決賽了.故選B.點睛:本題考查了統計量的選擇,以及中位數意義,解題的關鍵是正確的求出這組數據的中位數2、C【解題分析】

根據平行線性質求出∠D,根據三角形的內角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【題目詳解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故選C.【題目點撥】本題考查了三角形的內角和定理和平行線的性質的應用,關鍵是求出∠D的度數和得出∠C=180°-∠D-∠COD.應該掌握的是三角形的內角和為180°.3、B【解題分析】

利用平行線間的距離相等,可知點到、、的距離相等,然后可作出判斷.【題目詳解】解:如圖,過點作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點作于,作于E,作于.由題意可知:,,,∴,∴圖中的點是三角形三個內角的平分線的交點,點是的內心,故選B.【題目點撥】本題考查平行線間的距離,角平分線定理,三角形的內心,解題的關鍵是判斷出.4、C【解題分析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.5、C【解題分析】【分析】根據函數圖象的性質判斷系數k>0,則該函數圖象經過第一、三象限,由函數圖象與y軸交于負半軸,則該函數圖象經過第一、三、四象限,由此得到結論.【題目詳解】∵一次函數y=kx﹣1的圖象的y的值隨x值的增大而增大,∴k>0,A、把點(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合題意;B、把點(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合題意;C、把點(2,2)代入y=kx﹣1得到:k=>0,符合題意;D、把點(5,﹣1)代入y=kx﹣1得到:k=0,不符合題意,故選C.【題目點撥】考查了一次函數圖象上點的坐標特征,一次函數的性質,根據題意求得k>0是解題的關鍵.6、A【解題分析】

把x=﹣1代入方程計算即可求出k的值.【題目詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【題目點撥】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數的值.7、D【解題分析】

由二次函數的解析式可知,當x=1時,所對應的函數值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【題目詳解】解:∵二次函數y=ax2+bx-2的頂點在第三象限,且經過點(1,0)∴該函數是開口向上的,a>0

∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【題目點撥】本題考查大小二次函數的圖像,熟練掌握圖像的性質是解題的關鍵.8、C【解題分析】

根據眾數和中位數的定義,出現次數最多的那個數就是眾數,把一組數據按照大小順序排列,中間那個數或中間兩個數的平均數叫中位數.【題目詳解】捐款30元的人數為20人,最多,則眾數為30,中間兩個數分別為30和30,則中位數是30,故選C.【題目點撥】本題考查了條形統計圖、眾數和中位數,這是基礎知識要熟練掌握.9、C【解題分析】試題解析:、由監測點監測時,函數值隨的增大先減少再增大.故選項錯誤;、由監測點監測時,函數值隨的增大而增大,故選項錯誤;、由監測點監測時,函數值隨的增大先減小再增大,然后再減小,選項正確;、由監測點監測時,函數值隨的增大而減小,選項錯誤.故選.10、B【解題分析】

從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【題目詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【題目點撥】本題主要考查了求陰影部分面積和因式分解,關鍵是正確列出陰影部分與空白部分的面積和正確進行因式分解.二、填空題(共7小題,每小題3分,滿分21分)11、>【解題分析】

試題解析:∵<∴4<.考點:實數的大小比較.【題目詳解】請在此輸入詳解!12、【解題分析】

解:設E(x,x),∴B(2,x+2),∵反比例函數(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為13、4.【解題分析】

過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當AD⊥BC時,AD最短,依據BC=7,△ABC的面積為14,即可得到當AD⊥BC時,AD=4=AE=AF,進而得到△AEF的面積最小值為:AF×EG=×4×2=4.【題目詳解】解:如圖,過E作EG⊥AF,交FA的延長線于G,

由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,

∵∠BAC=75°,

∴∠EAF=150°,

∴∠EAG=30°,

∴EG=AE=AD,

當AD⊥BC時,AD最短,

∵BC=7,△ABC的面積為14,

∴當AD⊥BC時,,即:,∴.

∴△AEF的面積最小值為:

AF×EG=×4×2=4,故答案為:4.【題目點撥】本題主要考查了折疊問題,解題的關鍵是利用對應邊和對應角相等.14、y=﹣1x+1.【解題分析】

由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據平移得到新解析式.【題目詳解】∵點P(1,2)關于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數圖象與幾何變換.15、>【解題分析】

根據數軸可以確定m、n的大小關系,根據加法以及減法的法則確定m+n以及m?n的符號,可得結果.【題目詳解】解:根據題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【題目點撥】本題考查了整式的加減和數軸,熟練掌握運算法則是解題的關鍵.16、10%【解題分析】

設平均每次上調的百分率是x,因為經過兩次上調,且知道調前的價格和調后的價格,從而列方程求出解.【題目詳解】設平均每次上調的百分率是x,依題意得,解得:,(不合題意,舍去).答:平均每次上調的百分率為10%.故答案是:10%.【題目點撥】此題考查了一元二次方程的應用.解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程,再求解.17、<【解題分析】把點(-1,a)、(-2,b)分別代入拋物線,則有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案為<.三、解答題(共7小題,滿分69分)18、(1)2.1;(2)見解析;(3)x=2時,函數有最小值y=4.2【解題分析】

(1)通過作輔助線,應用三角函數可求得HM+HN的值即為x=2時,y的值;(2)可在網格圖中直接畫出函數圖象;(3)由函數圖象可知函數的最小值.【題目詳解】(1)當點P運動到點H時,AH=3,作HN⊥AB于點N.∵在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,∴∠HAN=42°,∴AN=HN=AH?sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案為:2.1;(2)(3)根據函數圖象可知,當x=2時,函數有最小值y=4.2.故答案為:4.2.【題目點撥】本題考查了二次函數的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.19、(1)0.3,45;(2)108°;(3).【解題分析】

(1)首先根據A組頻數及其頻率可得總人數,再利用頻數、頻率之間的關系求得a、b;(2)B組的頻率乘以360°即可求得答案;(2)畫樹形圖后即可將所有情況全部列舉出來,從而求得恰好抽中者兩人的概率;【題目詳解】(1)本次調查的總人數為17÷0.17=100(人),則a==0.3,b=100×0.45=45(人).故答案為0.3,45;(2)360°×0.3=108°.答:扇形統計圖中B組對應扇形的圓心角為108°.(3)將同一班級的甲、乙學生記為A、B,另外兩學生記為C、D,畫樹形圖得:∵共有12種等可能的情況,甲、乙兩名同學都被選中的情況有2種,∴甲、乙兩名同學都被選中的概率為=.【題目點撥】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.20、(1);(2).【解題分析】

(1)直接根據概率公式求解;

(2)先利用樹狀圖展示所有12種等可能的結果數,再找出第二象限內的點的個數,然后根據概率公式計算點(x,y)位于第二象限的概率.【題目詳解】(1)正數為2,所以該球上標記的數字為正數的概率為;(2)畫樹狀圖為:共有12種等可能的結果數,它們是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的點有2個,所以點(x,y)位于第二象限的概率==.【題目點撥】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.21、tanA=;綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【解題分析】

(1)由AC和BD是“對應邊”,可得AC=BD,設AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,可得AC是QP的垂直平分線.可求得△AEF∽△CEP,=,分兩種情況:當底邊PQ與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【題目詳解】解:[理解]∵AC和BD是“對應邊”,∴AC=BD,設AC=2x,則CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,當點P在AB上時,△APQ是等腰直角三角形,不可能是“中邊三角形”,如圖2,當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分線,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分兩種情況:當底邊PQ與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,如圖3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【題目點撥】本題是一道相似形綜合運用的試題,考查了相似三角形的判定及性質的運用,勾股定理的運用,等腰直角三角形的性質的運用,等腰三角形的性質的運用,銳角三角形函數值的運用,解答時靈活運用三角函數值建立方程求解是解答的關鍵.22、證明見解析.【解題分析】

根據菱形的性質,先證明△ABE≌△ADF,即可得解.【題目詳解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵點E,F分別是BC,CD邊的中點,∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.23、(1)A種鋼筆每只15元B種鋼筆每只20元;(2)方案有兩種,一方案為:購進A種鋼筆43支,購進B種鋼筆為47支方案二:購進A種鋼筆44支,購進B種鋼筆46支;(3)定價為33元或34元,最大利潤是728元.【解題分析】(1)設A種鋼筆每只x元,B種鋼筆每支y元,由題意得,解得:,答:A種鋼筆每只15元,B種鋼筆每支20元;(2)設購進A種鋼筆z支,由題意得:,∴42.4≤z<45,∵z是整數z=43,44,∴90-z=47,或46;∴共有兩種方案:方案一:購進A種鋼筆43支,購進B種鋼筆47支,方案二:購進A種鋼筆44只,購進B種鋼筆46只;(3)W=(30-20+a)(68-4a)=-4a2+28a+680=-4(a-)2+729,∵-4<0,∴W有最大值,∵a為正整數,∴當a=3,或a=4時,W最大,∴W最大==-4×(3-)2+729=728,30+a=33,或34;答:B種鉛筆銷售單價定為33元或34元時,每月獲利最大,最大利潤是728元.24、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解題分析】

(1)根據要求利用全等三角形的判定和性質畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論