




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年江蘇省淮安市淮陰區達標名校中考數學四模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.當x=1時,代數式x3+x+m的值是7,則當x=﹣1時,這個代數式的值是()A.7 B.3 C.1 D.﹣72.已知二次函數y=ax2+bx+c的圖像經過點(0,m)、(4、m)、(1,n),若n<m,則()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=03.如圖,將矩形ABCD沿EM折疊,使頂點B恰好落在CD邊的中點N上.若AB=6,AD=9,則五邊形ABMND的周長為()A.28 B.26 C.25 D.224.解分式方程時,去分母后變形為A. B.C. D.5.如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A逆時針旋轉到△AB′C′的位置,使得CC′∥AB,則∠CAC′為()A.30° B.35° C.40° D.50°6.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為()A.4 B.5 C.6 D.77.如圖是小強用八塊相同的小正方體搭建的一個積木,它的左視圖是()A. B. C. D.8.用教材中的計算器依次按鍵如下,顯示的結果在數軸上對應點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B9.濰坊市2018年政府工作報告中顯示,濰坊社會經濟平穩運行,地區生產總值增長8%左右,社會消費品零售總額增長12%左右,一般公共預算收入539.1億元,7家企業入選國家“兩化”融合貫標試點,濰柴集團收入突破2000億元,榮獲中國商標金獎.其中,數字2000億元用科學記數法表示為()元.(精確到百億位)A.2×1011B.2×1012C.2.0×1011D.2.0×101010.從﹣1,2,3,﹣6這四個數中任選兩數,分別記作m,n,那么點(m,n)在函數y=圖象上的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知實數m,n滿足,,且,則=.12.-3的倒數是___________13.27的立方根為.14.化簡的結果為_____.15.函數自變量x的取值范圍是_____.16.如圖,小軍、小珠之間的距離為2.7m,他們在同一盞路燈下的影長分別為1.8m,1.5m,已知小軍、小珠的身高分別為1.8m,1.5m,則路燈的高為____m.三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,E是邊BC上的點,AE=BC,DF⊥AE,垂足為F,連接DE.求證:AB=DF.18.(8分)某商場計劃購進A,B兩種新型節能臺燈共100盞,A型燈每盞進價為30元,售價為45元;B型臺燈每盞進價為50元,售價為70元.(1)若商場預計進貨款為3500元,求A型、B型節能燈各購進多少盞?根據題意,先填寫下表,再完成本問解答:型號A型B型購進數量(盞)x_____購買費用(元)__________(2)若商場規定B型臺燈的進貨數量不超過A型臺燈數量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?19.(8分)如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.(1)把△ABC繞點A旋轉到圖1,BD,CE的關系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點A旋轉,當∠EAC=90°時,在圖2中作出旋轉后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉過程中線段PD的最小值為,最大值為.20.(8分)某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數關系,其圖象是函數P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=(1)當8<t≤24時,求P關于t的函數解析式;(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關于t的函數解析式;②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續生產和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.21.(8分)如圖,輪船從點A處出發,先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數據:2≈1.41422.(10分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉,得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結果即可).23.(12分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.24.在邊長為1的5×5的方格中,有一個四邊形OABC,以O點為位似中心,作一個四邊形,使得所作四邊形與四邊形OABC位似,且該四邊形的各個頂點都在格點上;求出你所作的四邊形的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
因為當x=1時,代數式的值是7,所以1+1+m=7,所以m=5,當x=-1時,=-1-1+5=3,故選B.2、A【解題分析】
由圖像經過點(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時,y的值小于x=0時y的值,根據拋物線的對稱性可知開口方向,即可知道a的取值.【題目詳解】∵圖像經過點(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經過點(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.【題目點撥】此題主要考查拋物線的圖像,解題的關鍵是熟知拋物線的對稱性.3、A【解題分析】
如圖,運用矩形的性質首先證明CN=3,∠C=90°;運用翻折變換的性質證明BM=MN(設為λ),運用勾股定理列出關于λ的方程,求出λ,即可解決問題.【題目詳解】如圖,由題意得:BM=MN(設為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長=6+5+5+3+9=28,故選A.【題目點撥】該題主要考查了翻折變換的性質、矩形的性質、勾股定理等幾何知識點及其應用問題;解題的關鍵是靈活運用翻折變換的性質、矩形的性質、勾股定理等幾何知識點來分析、判斷、推理或解答.4、D【解題分析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.5、A【解題分析】
根據旋轉的性質可得AC=AC,∠BAC=∠BAC',再根據兩直線平行,內錯角相等求出∠ACC=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC,再求出∠BAB=∠CAC,從而得解【題目詳解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′為對應點,點A為旋轉中心,∴AC=AC′,即△ACC′為等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故選A.【題目點撥】此題考查等腰三角形的性質,旋轉的性質和平行線的性質,運用好旋轉的性質是解題關鍵6、B【解題分析】試題解析:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,連接BC′,由對稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據勾股定理可得DC′===1.故選B.7、D【解題分析】
左視圖從左往右,2列正方形的個數依次為2,1,依此得出圖形D正確.故選D.【題目詳解】請在此輸入詳解!8、A【解題分析】試題分析:在計算器上依次按鍵轉化為算式為﹣=-1.414…;計算可得結果介于﹣2與﹣1之間.故選A.考點:1、計算器—數的開方;2、實數與數軸9、C【解題分析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】2000億元=2.0×1.
故選:C.【題目點撥】考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、B【解題分析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與點(m,n)恰好在反比例函數y=圖象上的情況,再利用概率公式即可求得答案.【題目詳解】解:畫樹狀圖得:∵共有12種等可能的結果,點(m,n)恰好在反比例函數y=圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數y=圖象上的概率是:.故選B.【題目點撥】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數與總情況數之比.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解題分析】試題分析:由時,得到m,n是方程的兩個不等的根,根據根與系數的關系進行求解.試題解析:∵時,則m,n是方程3x2﹣6x﹣5=0的兩個不相等的根,∴,.∴原式===,故答案為.考點:根與系數的關系.12、【解題分析】
乘積為1的兩數互為相反數,即a的倒數即為,符號一致【題目詳解】∵-3的倒數是∴答案是13、1【解題分析】找到立方等于27的數即可.解:∵11=27,∴27的立方根是1,故答案為1.考查了求一個數的立方根,用到的知識點為:開方與乘方互為逆運算14、+1【解題分析】
利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【題目詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【題目點撥】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.15、x≥1且x≠1【解題分析】
根據分式成立的條件,二次根式成立的條件列不等式組,從而求解.【題目詳解】解:根據題意得:,解得x≥1,且x≠1,即:自變量x取值范圍是x≥1且x≠1.故答案為x≥1且x≠1.【題目點撥】本題考查函數自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.16、3【解題分析】試題分析:如圖,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,解得:AB=3m,答:路燈的高為3m.考點:中心投影.三、解答題(共8題,共72分)17、詳見解析.【解題分析】
根據矩形性質推出BC=AD=AE,AD∥BC,根據平行線性質推出∠DAE=∠AEB,根據AAS證出△ABE≌△DFA即可.【題目詳解】證明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB,
∵DF⊥AE,AE=BC=AD,
∴∠AFD=∠B=90°,
在△ABE和△DFA中
∵
∠AFD=∠B,∠DAF=∠AEB
,AE=AD
∴△ABE≌△DFA(AAS),
∴AB=DF.【題目點撥】本題考查的知識點有矩形的性質,全等三角形的判定與性質,平行線的性質.解決本題的關鍵在于能夠找到證明三角形全等的有關條件.18、(1)30x,y,50y;(2)商場購進A型臺燈2盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.【解題分析】
(1)設商場應購進A型臺燈x盞,表示出B型臺燈為y盞,然后根據“A,B兩種新型節能臺燈共100盞”、“進貨款=A型臺燈的進貨款+B型臺燈的進貨款”列出方程組求解即可;(2)設商場銷售完這批臺燈可獲利y元,根據獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據一次函數的增減性求出獲利的最大值.【題目詳解】解:(1)設商場應購進A型臺燈x盞,則B型臺燈為y盞,根據題意得:解得:.答:應購進A型臺燈75盞,B型臺燈2盞.故答案為30x;y;50y;(2)設商場應購進A型臺燈x盞,銷售完這批臺燈可獲利y元,則y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.∵B型臺燈的進貨數量不超過A型臺燈數量的3倍,∴100﹣x≤3x,∴x≥2.∵k=﹣5<0,y隨x的增大而減小,∴x=2時,y取得最大值,為﹣5×2+1=1875(元).答:商場購進A型臺燈2盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.【題目點撥】本題考查了一元一次方程的應用、二元一次方程組的應用以及一次函數的應用,主要利用了一次函數的增減性,(2)題中理清題目數量關系并列式求出x的取值范圍是解題的關鍵.19、(1)BD,CE的關系是相等;(2)或;(3)1,1【解題分析】分析:(1)依據△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進而得到△ABD≌△ACE,可得出BD=CE;(2)分兩種情況:依據∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進而得到PD=;依據∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進而得出PB=,PD=BD+PB=;(3)以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.分兩種情況進行討論,即可得到旋轉過程中線段PD的最小值以及最大值.詳解:(1)BD,CE的關系是相等.理由:∵△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案為相等.(2)作出旋轉后的圖形,若點C在AD上,如圖2所示:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD=;若點B在AE上,如圖2所示:∵∠BAD=90°,∴Rt△ABD中,BD=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB=,∴PD=BD+PB=+=,故答案為或;(3)如圖3所示,以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.如圖3所示,分兩種情況討論:在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.①當小三角形旋轉到圖中△ACB的位置時,在Rt△ACE中,CE==4,在Rt△DAE中,DE=,∵四邊形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,PD=,即旋轉過程中線段PD的最小值為1;②當小三角形旋轉到圖中△AB'C'時,可得DP'為最大值,此時,DP'=4+3=1,即旋轉過程中線段PD的最大值為1.故答案為1,1.點睛:本題屬于幾何變換綜合題,主要考查了等腰直角三角形的性質、旋轉變換、全等三角形的判定和性質、相似三角形的判定和性質、圓的有關知識,解題的關鍵是靈活運用這些知識解決問題,學會分類討論的思想思考問題,學會利用圖形的特殊位置解決最值問題.20、(1)P=t+2;(2)①當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+88;②此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.【解題分析】分析:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三種情況,根據月毛利潤=月銷量×每噸的毛利潤可得函數解析式;②求出8<t≤12和12<t≤24時,月毛利潤w在滿足336≤w≤513條件下t的取值范圍,再根據一次函數的性質可得P的最大值與最小值,二者綜合可得答案.詳解:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①當0<t≤8時,w=(2t+8)×=240;當8<t≤12時,w=(2t+8)(t+2)=2t2+12t+16;當12<t≤24時,w=(-t+44)(t+2)=-t2+42t+88;②當8<t≤12時,w=2t2+12t+16=2(t+3)2-2,∴8<t≤12時,w隨t的增大而增大,當2(t+3)2-2=336時,解題t=10或t=-16(舍),當t=12時,w取得最大值,最大值為448,此時月銷量P=t+2在t=10時取得最小值12,在t=12時取得最大值14;當12<t≤24時,w=-t2+42t+88=-(t-21)2+529,當t=12時,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴當12<t≤17時,448<w≤513,此時P=t+2的最小值為14,最大值為19;綜上,此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.點睛:本題主要考查二次函數的應用,掌握待定系數法求函數解析式及根據相等關系列出分段函數的解析式是解題的前提,利用二次函數的性質求得336≤w≤513所對應的t的取值范圍是解題的關鍵.21、(1)173;(2)點C位于點A的南偏東75°方向.【解題分析】試題分析:(1)作輔助線,過點A作AD⊥BC于點D,構造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC為直角三角形;然后根據方向角的定義,即可確定點C相對于點A的方向.試題解析:解:(1)如答圖,過點A作AD⊥BC于點D.由圖得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:點C與點A的距離約為173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:點C位于點A的南偏東75°方向.考點:1.解直角三角形的應用(方向角問題);2.銳角三角函數定義;3.特殊角的三角函數值;4.勾股定理和逆定理.22、(Ⅰ)D′(3+,3);(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由見解析;(Ⅲ)P().【解題分析】
(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點D坐標,再求出CC′的長即可解決問題;(Ⅱ)當BB'=時,四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問題;(Ⅲ)在△ABP中,由三角形三邊關系得,AP<AB+BP,推出當點A,B,P三點共線時,AP最大.【題目詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高血壓病的降血壓藥物種類和作用機制
- 廣州以大科技java面試題及答案
- 戰略會議流程標準化框架
- 2025年中國烹飪灶臺行業市場全景分析及前景機遇研判報告
- 2025年中國歐夏至草補充劑行業市場全景分析及前景機遇研判報告
- 2025年中國濃縮番茄醬行業市場全景分析及前景機遇研判報告
- 數據標注流程規范
- 2025年中國母嬰家電行業市場全景分析及前景機遇研判報告
- 手指房子創意畫
- 艾滋病防治與健康管理
- 2025魯教版高中地理必修一知識點歸納總結(復習必背)
- 北京市月壇中學2025屆中考生物仿真試卷含解析
- 幼兒園《綱要》培訓
- 2025年度會計人員繼續教育會計法律法規答題活動測試100題答案
- 《玻璃體腔注射治療》課件
- 政府保密協議范本格式3篇
- 政府經濟學-電大易考通考試題目答案 (一)
- 上海市算力基礎設施發展報告2024年
- 離斷傷應急救護原則教學
- 24秋國家開放大學《社會教育及管理》形考任務1-3參考答案
- 校園網規劃設計方案
評論
0/150
提交評論