2024屆安徽省阜陽市阜南縣市級名校中考試題猜想數學試卷含解析_第1頁
2024屆安徽省阜陽市阜南縣市級名校中考試題猜想數學試卷含解析_第2頁
2024屆安徽省阜陽市阜南縣市級名校中考試題猜想數學試卷含解析_第3頁
2024屆安徽省阜陽市阜南縣市級名校中考試題猜想數學試卷含解析_第4頁
2024屆安徽省阜陽市阜南縣市級名校中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年安徽省阜陽市阜南縣市級名校中考試題猜想數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.不等式組的解集在數軸上可表示為()A. B. C. D.2.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m3.如圖,在中,,將繞點逆時針旋轉,使點落在線段上的點處,點落在點處,則兩點間的距離為()A. B. C. D.4.如圖,在平面直角坐標系中,點A在x軸的正半軸上,點B的坐標為(0,4),將△ABO繞點B逆時針旋轉60°后得到△A'BO',若函數y=(x>0)的圖象經過點O',則k的值為()A.2 B.4 C.4 D.85.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④6.對于非零的兩個實數、,規定,若,則的值為()A. B. C. D.7.下列運算正確的是()A.5a+2b=5(a+b) B.a+a2=a3C.2a3?3a2=6a5 D.(a3)2=a58.把8a3﹣8a2+2a進行因式分解,結果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)29.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.10.下列各式正確的是()A. B.C. D.11.6的絕對值是()A.6 B.﹣6 C. D.12.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉90°,得△ABF,連接EF交AB于H,有如下五個結論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結論有()A.2個 B.3個 C.4個 D.5個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知點A,B的坐標分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點A與點A′對應,點B與點B′對應,若點A′的坐標為(2,﹣3),則點B′的坐標為________.14.八位女生的體重(單位:kg)分別為36、42、38、40、42、35、45、38,則這八位女生的體重的中位數為_____kg.15.計算:2tan16.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.17.在平面直角坐標系中,已知線段AB的兩個端點的坐標分別是A(4,-1)、B(1,1),將線段AB平移后得到線段A′B′,若點A′的坐標為(-2,2),則點B′的坐標為________.18.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.20.(6分)某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據調查結果繪制成如下的不完整的扇形統計圖和條形統計圖:(1)在這次調查中,喜歡籃球項目的同學有______人,在扇形統計圖中,“乒乓球”的百分比為______%,如果學校有800名學生,估計全校學生中有______人喜歡籃球項目.(2)請將條形統計圖補充完整.(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現要從中隨機抽取2名同學代表班級參加校籃球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.21.(6分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.22.(8分)在國家的宏觀調控下,某市的商品房成交價由去年10月份的14000元/下降到12月份的11340元/.求11、12兩月份平均每月降價的百分率是多少?如果房價繼續回落,按此降價的百分率,你預測到今年2月份該市的商品房成交均價是否會跌破10000元/?請說明理由23.(8分)某校為了創建書香校遠,計劃進一批圖書,經了解.文學書的單價比科普書的單價少20元,用800元購進的文學書本數與用1200元購進的科普書本數相等.文學書和科普書的單價分別是多少元?該校計劃用不超過5000元的費用購進一批文學書和科普書,問購進60本文學書后最多還能購進多少本科普書?24.(10分)如圖,已知反比例函數和一次函數的圖象相交于第一象限內的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數和一次函數的解析式.若一次函數的圖象與x軸相交于點C,求∠ACO的度數.結合圖象直接寫出:當>>0時,x的取值范圍.25.(10分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數繪制成如圖所示的折線統計圖.(1)根據圖中所給信息填寫下表:投中個數統計平均數中位數眾數A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩定性考慮應該選派誰?請你利用學過的統計量對問題進行分析說明.26.(12分)在矩形紙片ABCD中,AB=6,BC=8,現將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.27.(12分)某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經過市場調查,發現這種商品單價每降低1元,其銷量可增加10件.(1)求商場經營該商品原來一天可獲利潤多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.①若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?②求出y與x之間的函數關系式,并通過畫該函數圖象的草圖,觀察其圖象的變化趨勢,結合題意寫出當x取何值時,商場獲利潤不少于2160元.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】

先求出每個不等式的解集,再求出不等式組的解集即可.【題目詳解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式組的解集為1<x≤2,在數軸上表示為:,故選A.【題目點撥】本題考查了解一元一次不等式組和在數軸上表示不等式組的解集,能根據不等式的解集找出不等式組的解集是解此題的關鍵.2、B【解題分析】

因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據正弦來解題,求出∠CAB,進而得出∠C′AB′的度數,然后可以求出魚線B'C'長度.【題目詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【題目點撥】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數學問題.3、A【解題分析】

先利用勾股定理計算出AB,再在Rt△BDE中,求出BD即可;【題目詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.【題目點撥】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.4、C【解題分析】

根據題意可以求得點O'的坐標,從而可以求得k的值.【題目詳解】∵點B的坐標為(0,4),

∴OB=4,

作O′C⊥OB于點C,

∵△ABO繞點B逆時針旋轉60°后得到△A'BO',

∴O′B=OB=4,

∴O′C=4×sin60°=2,BC=4×cos60°=2,

∴OC=2,

∴點O′的坐標為:(2,2),

∵函數y=(x>0)的圖象經過點O',

∴2=,得k=4,

故選C.【題目點撥】本題考查了反比例函數圖象上點的坐標特征、坐標與圖形的變化,解題的關鍵是利用數形結合的思想和反比例函數的性質解答.5、D【解題分析】

①根據作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質來求∠ADC的度數;③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【題目詳解】①根據作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【題目點撥】本題主要考查尺規作角平分線、角平分線的性質定理、三角形的外角以及等腰三角形的性質,熟練掌握有關知識點是解答的關鍵.6、D【解題分析】試題分析:因為規定,所以,所以x=,經檢驗x=是分式方程的解,故選D.考點:1.新運算;2.分式方程.7、C【解題分析】

直接利用合并同類項法則以及單項式乘以單項式、冪的乘方運算法則分別化簡得出答案.【題目詳解】A、5a+2b,無法計算,故此選項錯誤;B、a+a2,無法計算,故此選項錯誤;C、2a3?3a2=6a5,故此選項正確;D、(a3)2=a6,故此選項錯誤.故選C.【題目點撥】此題主要考查了合并同類項以及單項式乘以單項式、冪的乘方運算,正確掌握運算法則是解題關鍵.8、C【解題分析】

首先提取公因式2a,進而利用完全平方公式分解因式即可.【題目詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【題目點撥】本題因式分解中提公因式法與公式法的綜合運用.9、A【解題分析】解:如圖,連接BE,設BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質,要靈活運用對稱性解決此類問題.找出P點位置是解題的關鍵.10、A【解題分析】∵,則B錯;,則C;,則D錯,故選A.11、A【解題分析】試題分析:1是正數,絕對值是它本身1.故選A.考點:絕對值.12、C【解題分析】

由旋轉性質得到△AFB≌△AED,再根據相似三角對應邊的比等于相似比,即可分別求得各選項正確與否.【題目詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【題目點撥】本題主要考查了正方形的性質、等腰直角三角形的性質、全等三角形的判定和性質等知識,熟練地應用旋轉的性質以及相似三角形的性質是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(5,﹣8)【解題分析】

各對應點之間的關系是橫坐標加4,縱坐標減6,那么讓點B的橫坐標加4,縱坐標減6即為點B′的坐標.【題目詳解】由A(-2,3)的對應點A′的坐標為(2,-13),坐標的變化規律可知:各對應點之間的關系是橫坐標加4,縱坐標減6,∴點B′的橫坐標為1+4=5;縱坐標為-2-6=-8;即所求點B′的坐標為(5,-8).故答案為(5,-8)【題目點撥】此題主要考查了坐標與圖形的變化-平移,解決本題的關鍵是根據已知對應點找到各對應點之間的變化規律.14、1【解題分析】

根據中位數的定義,結合圖表信息解答即可.【題目詳解】將這八位女生的體重重新排列為:35、36、38、38、40、42、42、45,則這八位女生的體重的中位數為=1kg,故答案為1.【題目點撥】本題考查了中位數,確定中位數的時候一定要先排好順序,然后再根據個數是奇數或偶數來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數,中位數有時不一定是這組數據的數.15、3+3【解題分析】

本題涉及零指數冪、負指數冪、絕對值、特殊角的三角函數值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【題目詳解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.【題目點撥】本題主要考查了實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、特殊角的三角函數、絕對值等考點的運算16、﹣2【解題分析】

連結AE,如圖1,先根據等腰直角三角形的性質得到AB=AC=4,再根據圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【題目詳解】連結AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【題目點撥】此題考查等腰直角三角形的性質,圓周角定理,勾股定理,解題關鍵在于結合實際運用圓的相關性質.17、(-5,4)【解題分析】試題解析:由于圖形平移過程中,對應點的平移規律相同,

由點A到點A'可知,點的橫坐標減6,縱坐標加3,

故點B'的坐標為即

故答案為:18、(﹣,1)【解題分析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質、全等三角形的判定和性質等知識,坐標與圖形的性質,解題的關鍵是學會添加常用的輔助線,構造全等三角形解決問題,屬于中考常考題型.注意:距離都是非負數,而坐標可以是負數,在由距離求坐標時,需要加上恰當的符號.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解題分析】

(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式組的解集即可.【題目詳解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式組的解集為﹣1≤x<1.【題目點撥】本題考查了解一元一次不等式組和解一元二次方程,能把一元二次方程轉化成一元一次方程是解(1)的關鍵,能根據不等式的解集找出不等式組的解集是解(2)的關鍵.20、(1)5,20,80;(2)圖見解析;(3).【解題分析】【分析】(1)根據喜歡跳繩的人數以及所占的比例求得總人數,然后用總人數減去喜歡跳繩、乒乓球、其它的人數即可得;(2)用乒乓球的人數除以總人數即可得;(3)用800乘以喜歡籃球人數所占的比例即可得;(4)根據(1)中求得的喜歡籃球的人數即可補全條形圖;(5)畫樹狀圖可得所有可能的情況,根據樹狀圖求得2名同學恰好是1名女同學和1名男同學的結果,根據概率公式進行計算即可.【題目詳解】(1)調查的總人數為20÷40%=50(人),喜歡籃球項目的同學的人數=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計全校學生中有80人喜歡籃球項目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結果數,其中所抽取的2名同學恰好是1名女同學和1名男同學的結果數為12,所以所抽取的2名同學恰好是1名女同學和1名男同學的概率=.21、證明見解析.【解題分析】

過點B作BF⊥CE于F,根據同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據全等三角形對應邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據矩形的對邊相等可得AE=BF,從而得證.【題目詳解】證明:如圖,過點B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四邊形AEFB是矩形,∴AE=BF,∴AE=CE.22、(1)10%;(1)會跌破10000元/m1.【解題分析】

(1)設11、11兩月平均每月降價的百分率是x,那么4月份的房價為14000(1-x),11月份的房價為14000(1-x)1,然后根據11月份的11340元/m1即可列出方程解決問題;(1)根據(1)的結果可以計算出今年1月份商品房成交均價,然后和10000元/m1進行比較即可作出判斷.【題目詳解】(1)設11、11兩月平均每月降價的百分率是x,則11月份的成交價是:14000(1-x),11月份的成交價是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合題意,舍去)答:11、11兩月平均每月降價的百分率是10%;(1)會跌破10000元/m1.如果按此降價的百分率繼續回落,估計今年1月份該市的商品房成交均價為:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份該市的商品房成交均價會跌破10000元/m1.【題目點撥】此題考查了一元二次方程的應用,和實際生活結合比較緊密,正確理解題意,找到關鍵的數量關系,然后列出方程是解題的關鍵.23、(1)文學書的單價為40元/本,科普書的單價為1元/本;(2)購進1本文學書后最多還能購進2本科普書.【解題分析】

(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,根據數量=總價÷單價結合用800元購進的文學書本數與用1200元購進的科普書本數相等,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設購進m本科普書,根據總價=文學書的單價×購進本數+科普書的單價×購進本數結合總價不超過5000元,即可得出關于m的一元一次不等式,解之取其中的最大整數值即可得出結論.【題目詳解】解:(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,依題意,得:800x解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x+20=1.答:文學書的單價為40元/本,科普書的單價為1元/本.(2)設購進m本科普書,依題意,得:40×1+1m≤5000,解得:m≤431∵m為整數,∴m的最大值為2.答:購進1本文學書后最多還能購進2本科普書.【題目點撥】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量之間的關系,正確列出一元一次不等式.24、(1)y=;y=x+1;(2)∠ACO=45°;(3)0<x<1.【解題分析】

(1)根據△AOB的面積可求AB,得A點坐標.從而易求兩個函數的解析式;(2)求出C點坐標,在△ABC中運用三角函數可求∠ACO的度數;(3)觀察第一象限內的圖形,反比例函數的圖象在一次函數的圖象的上面部分對應的x的值即為取值范圍.【題目詳解】(1)∵△AOB的面積為1,并且點A在第一象限,∴k=2,∴y=;∵點A的橫坐標為1,∴A(1,2).把A(1,2)代入y=ax+1得,a=1.∴y=x+1.(2)令y=0,0=x+1,∴x=?1,∴C(?1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由圖象可知,在第一象限,當y>y>0時,0<x<1.在第三象限,當y>y>0時,?1<x<0(舍去).【題目點撥】此題考查反比例函數與一次函數的交點問題,解題關鍵在于結合函數圖象進行解答.25、(1)7,9,7;(2)應該選派B;【解題分析】

(1)分別利用平均數、中位數、眾數分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論