特級(jí)教師改編中考數(shù)學(xué)幾何模型24講:專題14 胡不歸中的雙線段模型與最值問題(教師版)_第1頁
特級(jí)教師改編中考數(shù)學(xué)幾何模型24講:專題14 胡不歸中的雙線段模型與最值問題(教師版)_第2頁
特級(jí)教師改編中考數(shù)學(xué)幾何模型24講:專題14 胡不歸中的雙線段模型與最值問題(教師版)_第3頁
特級(jí)教師改編中考數(shù)學(xué)幾何模型24講:專題14 胡不歸中的雙線段模型與最值問題(教師版)_第4頁
特級(jí)教師改編中考數(shù)學(xué)幾何模型24講:專題14 胡不歸中的雙線段模型與最值問題(教師版)_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題2胡不歸中的雙線段模型與最值問題【專題說明】胡不歸模型問題解題步驟如下;1、將所求線段和改寫為“PA+PB”的形式(<1),若>1,提取系數(shù),轉(zhuǎn)化為小于1的形式解決。2、在PB的一側(cè),PA的異側(cè),構(gòu)造一個(gè)角度α,使得sinα=3、最后利用兩點(diǎn)之間線段最短及垂線段最短解題【模型展示】如圖,一動(dòng)點(diǎn)P在直線MN外的運(yùn)動(dòng)速度為V1,在直線MN上運(yùn)動(dòng)的速度為V2,且V1<V2,A、B為定點(diǎn),點(diǎn)C在直線MN上,確定點(diǎn)C的位置使的值最小.,記,即求BC+kAC的最小值.構(gòu)造射線AD使得sin∠DAN=k,CH/AC=k,CH=kAC.將問題轉(zhuǎn)化為求BC+CH最小值,過B點(diǎn)作BH⊥AD交MN于點(diǎn)C,交AD于H點(diǎn),此時(shí)BC+CH取到最小值,即BC+kAC最小.在求形如“PA+kPB”式子最值問題中,關(guān)鍵是構(gòu)造與kPB相等的線段,將“PA+kPB”型問題轉(zhuǎn)化為“PA+PC”型.【例題】1、在平面直角坐標(biāo)系中,將二次函數(shù)的圖象向右平移1個(gè)單位,再向下平移2個(gè)單位,得到如圖所示的拋物線,該拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),,經(jīng)過點(diǎn)的一次函數(shù)的圖象與軸正半軸交于點(diǎn),且與拋物線的另一個(gè)交點(diǎn)為,的面積為5.(1)求拋物線和一次函數(shù)的解析式;(2)拋物線上的動(dòng)點(diǎn)在一次函數(shù)的圖象下方,求面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);(3)若點(diǎn)為軸上任意一點(diǎn),在(2)的結(jié)論下,求的最小值.【解析】(1)將二次函數(shù)的圖象向右平移1個(gè)單位,再向下平移2個(gè)單位,得到的拋物線解析式為,∵,∴點(diǎn)的坐標(biāo)為,代入拋物線的解析式得,,∴,∴拋物線的解析式為,即.令,解得,,∴,∴,∵的面積為5,∴,∴,代入拋物線解析式得,,解得,,∴,設(shè)直線的解析式為,∴,解得:,∴直線的解析式為.(2)過點(diǎn)作軸交于,如圖,設(shè),則,∴,∴,∴當(dāng)時(shí),的面積有最大值,最大值是,此時(shí)點(diǎn)坐標(biāo)為.(3)作關(guān)于軸的對(duì)稱點(diǎn),連接交軸于點(diǎn),過點(diǎn)作于點(diǎn),交軸于點(diǎn),∵,,∴,,∴,∵,∴,∴,∵、關(guān)于軸對(duì)稱,∴,∴,此時(shí)最小,∵,,∴,∴.∴的最小值是3.2、如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是?【解析】如圖,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,設(shè)AE=a,BE=2a,則有:100=a2+4a2,∴a2=20,∴a=2或-2(舍棄),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形兩腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值為4.

3、已知拋物線過點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,.(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)過點(diǎn)A作,垂足為M,求證:四邊形ADBM為正方形;(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);(4)若點(diǎn)Q為線段OC上的一動(dòng)點(diǎn),問:是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請(qǐng)說明理由.【解析】(1)函數(shù)的表達(dá)式為:,即:,解得:,故拋物線的表達(dá)式為:,則頂點(diǎn);(2),,∵A(1,0),B(3,0),∴OB=3,OA=1,∴AB=2,∴,又∵D(2,-1),∴AD=BD=,∴AM=MB=AD=BD,∴四邊形ADBM為菱形,又∵,菱形ADBM為正方形;(3)設(shè)直線BC的解析式為y=mx+n,將點(diǎn)B、C的坐標(biāo)代入得:,解得:,所以直線BC的表達(dá)式為:y=-x+3,過點(diǎn)P作y軸的平行線交BC于點(diǎn)N,設(shè)點(diǎn),則點(diǎn)N,則,,故有最大值,此時(shí),故點(diǎn);(4)存在,理由:如圖,過點(diǎn)C作與y軸夾角為的直線CF交x軸于點(diǎn)F,過點(diǎn)A作,垂足為H,交y軸于點(diǎn)Q,此時(shí),則最小值,在Rt△COF中,∠COF=90°,∠FOC=30°,OC=3,tan∠FCO=,∴OF=,∴F(-,0),利用待定系數(shù)法可求得直線HC的表達(dá)式為:…①,∵∠COF=90°,∠FOC=30°,∴∠CFO=90°-30°=60°,∵∠AHF=90°,∴∠FAH=90°-60°=30°,∴OQ=AO?tan∠FAQ=,∴Q(0,),利用待定系數(shù)法可求得直線AH的表達(dá)式為:…②,聯(lián)立①②并解得:,故點(diǎn),而點(diǎn),則,即的最小值為.4、已知拋物線(為常數(shù),)經(jīng)過點(diǎn),點(diǎn)是軸正半軸上的動(dòng)點(diǎn).(Ⅰ)當(dāng)時(shí),求拋物線的頂點(diǎn)坐標(biāo);(Ⅱ)點(diǎn)在拋物線上,當(dāng),時(shí),求的值;(Ⅲ)點(diǎn)在拋物線上,當(dāng)?shù)淖钚≈禐闀r(shí),求的值.【解析】(Ⅰ)∵拋物線經(jīng)過點(diǎn),∴.即.當(dāng)時(shí),,∴拋物線的頂點(diǎn)坐標(biāo)為.(Ⅱ)由(Ⅰ)知,拋物線的解析式為.∵點(diǎn)在拋物線上,∴.由,得,,∴點(diǎn)在第四象限,且在拋物線對(duì)稱軸的右側(cè).如圖,過點(diǎn)作軸,垂足為,則點(diǎn).∴,.得.∴在中,.∴.由已知,,∴.∴.(Ⅲ)∵點(diǎn)在拋物線上,∴.可知點(diǎn)在第四象限,且在直線的右側(cè).考慮到,可取點(diǎn),如圖,過點(diǎn)作直線的垂線,垂足為,與軸相交于點(diǎn),有,得,則此時(shí)點(diǎn)滿足題意.過點(diǎn)作軸于點(diǎn),則點(diǎn).在中,可知.∴,.∵點(diǎn),∴.解得.∵,∴.∴.5、如圖,在平面在角坐標(biāo)系中,拋物線y=x2-2x-3與x軸交與點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè))交y軸于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),對(duì)稱軸與x軸交于點(diǎn)E.(1)連結(jié)BD,點(diǎn)M是線段BD上一動(dòng)點(diǎn)(點(diǎn)M不與端點(diǎn)B,D重合),過點(diǎn)M作MN⊥BD交拋物線于點(diǎn)N(點(diǎn)N在對(duì)稱軸的右側(cè)),過點(diǎn)N作NH⊥x軸,垂足為H,交BD于點(diǎn)F,點(diǎn)P是線段OC上一動(dòng)點(diǎn),當(dāng)MN取得最大值時(shí),求HF+FP+PC的最小值;(2)在(1)中,當(dāng)MN取得最大值HF+FP+1/3PC取得小值時(shí),把點(diǎn)P向上平移個(gè)單位得到點(diǎn)Q,連結(jié)AQ,把△AOQ繞點(diǎn)O瓶時(shí)針旋轉(zhuǎn)一定的角度(0°<<360°),得到△AOQ,其中邊AQ交坐標(biāo)軸于點(diǎn)C在旋轉(zhuǎn)過程中,是否存在一點(diǎn)G使得?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.【解析】(1)如圖1∵拋物線y=x2﹣2x﹣3與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C∴令y=0解得:x1=﹣1,x2=3,令x=0,解得:y=﹣3,∴A(﹣1,0),B(3,0),C(0,﹣3)∵點(diǎn)D為拋物線的頂點(diǎn),且﹣4∴點(diǎn)D的坐標(biāo)為D(1,﹣4),∴直線BD的解析式為:y=2x﹣6,由題意,可設(shè)點(diǎn)N(m,m2﹣2m﹣3),則點(diǎn)F(m,2m﹣6)∴|NF|=(2m﹣6)﹣(m2﹣2m﹣3)=﹣m2+4m﹣3∴當(dāng)m==2時(shí),NF取到最大值,此時(shí)MN取到最大值,此時(shí)HF=2,此時(shí),N(2,﹣3),F(xiàn)(2,﹣2),H(2,0)在x軸上找一點(diǎn)K(,0),連接CK,過點(diǎn)F作CK的垂線交CK于點(diǎn)J點(diǎn),交y軸于點(diǎn)P,∴sin∠OCK=,直線KC的解析式為:,且點(diǎn)F(2,﹣2),∴PJ=PC,直線FJ的解析式為:,∴點(diǎn)J(,)∴FP+PC的最小值即為FJ的長,且,∴;(2)由(1)知,點(diǎn)P(0,),∵把點(diǎn)P向上平移個(gè)單位得到點(diǎn)Q,∴點(diǎn)Q(0,﹣2)∴在Rt△AOQ中,∠AOG=90°,AQ=,取AQ的中點(diǎn)G,連接OG,則OG=GQ=AQ=,此時(shí),∠AQO=∠GOQ把△AOQ繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定的角度α(0°<α<360°),得到△A′OQ′,其中邊A′Q′交坐標(biāo)軸于點(diǎn)G①如圖2G點(diǎn)落在y軸的負(fù)半軸,則G(0,﹣),過點(diǎn)Q'作Q'I⊥x軸交x軸于點(diǎn)I,且∠GOQ'=∠Q'則∠IOQ'=∠OA'Q'=∠OAQ,∵sin∠OAQ===,∴,解得:|IO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論