




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
5.1.1平均變化率第5章§5.1導數的概念1.了解平均變化率的實際背景.2.理解平均變化率的含義.3.會求函數在某一點附近的平均變化率,并能用平均變化率解釋一些實際問題.學習目標導語恩格斯說:“只有微分學才能使自然科學有可能用數學來不僅僅表明狀態,而且也表明過程:運動.”大家知道,世界充滿著變化,有些變化幾乎不易被人們察覺,而有些變化卻讓人們發出感嘆與驚呼!比如同學們身高、體重的變化,學習成績的變化,在短時間內不易被發現,而火箭的發射、F1賽道上賽車的速度卻會讓我們驚呼.平均變化率的概念一問題如圖是某市近34天最高氣溫的統計圖,用怎樣的數學模型刻畫氣溫變化的快慢程度?2.平均變化率是曲線陡峭程度的“
”,或者說,曲線陡峭程度是平均變化率的“
”.注意點:(1)函數在區間[x1,x2]上有意義.(3)實質:函數值的改變量與自變量的改變量之比.(4)作用:刻畫函數值在區間[x1,x2]上變化的快慢.數量化視覺化(1)已知函數f(x)=x2+1,則當x由2變到2.1時,函數值的改變量為()A.0.40 B.0.41
C.0.43 D.0.44例1
答案B解析f(2.1)-f(2)=2.12+1-(22+1)=0.41.故選B.
如圖,函數y=f(x)在A,B兩點間的平均變化率等于A.1 B.-1C.2 D.-2√練習1
平均變化率概念的理解(1)要注意Δx,Δy的值可正、可負,但Δx≠0,Δy可為零,若函數f(x)為常數函數,則Δy=0.(3)平均變化率一定是相對某一區間而言的,一般地,區間不同,平均變化率也不同.實際問題中的平均變化率二【例2】水經過虹吸管從容器甲中流向容器乙,ts后容器甲中水的體積
(單位:
)試計算第一個10s內V的平均變化率.即第一個10s內容器甲中水的體積的平均變化率為-0.25cm3/s(負號表示容器甲中的水在減少).解:練習2
蜥蜴的體溫與陽光的照射有關,其關系為T=
+15,其中T為體溫(單位:℃),t為太陽落山后的時間(單位:min),則t=0到t=10,蜥蜴的體溫的平均變化率為______℃/min.-1.6故從t=0到t=10,蜥蜴的體溫的平均變化率為-1.6℃/min.平均變化率問題在生活中隨處可見,常見的有求某段時間內的平均速度、加速度、膨脹率、經濟效益等.分清自變量和因變量是解決此類問題的關鍵.函數中的平均變化率三例3
計算函數f(x)=x2從x=1到x=1+Δx的平均變化率,其中Δx的值為:(1)2;
(2)1;
(3)0.1;
(4)0.01.因為f(1+Δx)-f(1)=(1+Δx)2-12=(Δx)2+2Δx,(1)當Δx=2時,平均變化率為Δx+2=4,即函數f(x)=x2在區間[1,3]上的平均變化率為4.(2)當Δx=1時,平均變化率為Δx+2=3,即函數f(x)=x2在區間[1,2]上的平均變化率為3.(3)當Δx=0.1時,平均變化率為Δx+2=2.1,即函數f(x)=x2在區間[1,1.1]上的平均變化率為2.1.(4)當Δx=0.01時,平均變化率為Δx+2=2.01,即函數f(x)=x2在區間[1,1.01]上的平均變化率為2.01.計算函數f(x)=x2從x=1到x=1+Δx的平均變化率,其中Δx的值為:
①2;②1;③0.1;④0.01.并思考:當Δx越來越小時,函數f(x)在區間[1,1+Δx]上的平均變化率有怎樣的變化趨勢?觀察上式可知,當Δx越來越小時,函數f(x)在區間[1,1+Δx]上的平均變化率逐漸變小并接近于2.
(2)已知函數f(x)=2x+1,g(x)=-2x,分別計算在區間[-3,-1],[0,5]上函數f(x)及g(x)的平均變化率.解:函數f(x)在區間[-3,-1]上的平均變化率為
同理可得,函數f(x)在區間[0,5]上的平均變化率為
2;函數g(x)在區間[-3,-1]上的平均變化率為-2;函數g(x)在區間[0,5]上的平均變化率為-2.[問題]從上述習題的求解中,你能發現一次函數y=kx+b在區間[p,q]上的平均變化率有什么規律嗎?
[結論]:一次函數y=kx+b在區間[p,q]上的平均變化率為直線的斜率k.
練習3若函數f(x)=3x+1,試求f(x)在區間[a,b]上的平均變化率.
答案:3求函數平均變化率的步驟(1)求自變量的改變量x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 探討信息系統項目管理師考試的重要性與必要性試題及答案
- 網絡工程師考試策略試題及答案
- 機電工程考試的成功法則2025年試題及答案
- 西方國家文化多樣性對政策的影響試題及答案
- 網絡工程師考試沖刺技巧與試題及答案
- 歷史與現實結合的西方政治研究試題及答案
- 合作治理在公共政策中的案例應用試題及答案
- 公共政策與民生福祉試題及答案
- 公共政策與環境可持續發展的關系試題及答案
- 小組學習的優勢信息系統項目管理師試題及答案
- 2025八省適應性考試語文的3道作文題深度解析和寫作指導(真題+審題立意+標題+范文)【技法精研】高考語文議論文寫作
- 輸血科生物安全培訓課件
- 100以內加法減法口算1000題知識練習打印
- 2025年湖南長沙穗城軌道交通限公司社會招聘261人高頻重點模擬試卷提升(共500題附帶答案詳解)
- 應急藥品知識培訓課件
- 差分進化算法研究
- 2025年湖北省武漢城市職業學院面向社會招聘人事代理人員27人歷年高頻重點提升(共500題)附帶答案詳解
- 國家開放大學《經濟學(本)》形考任務1-6答案
- 職業教育與成人教育科2024年工作總結
- T-CNAS 12─2020 成人經口氣管插管機械通氣患者口腔護理
- T∕CACM 1021.92-2018 中藥材商品規格等級 獨活
評論
0/150
提交評論