2024屆廣東省新朗實驗校中考數學適應性模擬試題含解析_第1頁
2024屆廣東省新朗實驗校中考數學適應性模擬試題含解析_第2頁
2024屆廣東省新朗實驗校中考數學適應性模擬試題含解析_第3頁
2024屆廣東省新朗實驗校中考數學適應性模擬試題含解析_第4頁
2024屆廣東省新朗實驗校中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省新朗實驗校中考數學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現需降價處理,為占有市場份額,且經市場調查:每降價元,每星期可多賣出件.現在要使利潤為元,每件商品應降價()元.A.3 B.2.5 C.2 D.52.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉,使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數為()A.80° B.90° C.100° D.120°3.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數為2的概率為”表示隨著拋擲次數的增加,“拋出朝上的點數為2”這一事件發生的概率穩定在附近4.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m5.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.6.拋物線經過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數是()A.32° B.30° C.38° D.58°8.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確9.若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點為(﹣1,0),(3,0)C.當x=1時,y有最大值為0D.拋物線的對稱軸是直線x=10.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結論錯誤的是()A.AEEC=BEED B.AE11.在同一直角坐標系中,函數y=kx-k與(k≠0)的圖象大致是()A. B.C. D.12.如圖,△ABC為等腰直角三角形,∠C=90°,點P為△ABC外一點,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關系為________.(填“>”或“<”)14.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.15.若一次函數y=-2x+b(b為常數)的圖象經過第二、三、四象限,則b的值可以是_________.(寫出一個即可)16.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結論有_____.(填寫所有正確結論的序號)17.計算:(π﹣3)0﹣2-1=_____.18.如圖,一塊飛鏢游戲板由大小相等的小正方形格子構成,向游戲板隨機投擲一枚飛鏢,擊中黑色區域的概率是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉90°畫出旋轉之后的△AB′C′;求線段AC旋轉過程中掃過的扇形的面積.20.(6分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數量關系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數量關系為.21.(6分)在如圖的正方形網格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.22.(8分)甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發的時間x(分)之間的關系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達終點?23.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.24.(10分)今年義烏市準備爭創全國衛生城市,某小區積極響應,決定在小區內安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.(1)求溫馨提示牌和垃圾箱的單價各是多少元?(2)該小區至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?25.(10分)某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節目的喜愛情況,隨機選取該校部分學生進行調查,要求每名學生從中選出一類最喜愛的電視節目,以下是根據調查結果繪制的不完整統計表:節目代號ABCDE節目類型新聞體育動畫娛樂戲曲喜愛人數1230m549請你根據以上的信息,回答下列問題:(1)被調查學生的總數為人,統計表中m的值為.扇形統計圖中n的值為;(2)被調查學生中,最喜愛電視節目的“眾數”;(3)該校共有2000名學生,根據調查結果,估計該校最喜愛新聞節目的學生人數.26.(12分)某學校“智慧方園”數學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經過社團成員討論發現,過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.27.(12分)“鐵路建設助推經濟發展”,近年來我國政府十分重視鐵路建設.渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設計運行時速比原鐵路設計運行時速提高了120千米/小時,全程設計運行時間只需8小時,比原鐵路設計運行時間少用16小時.(1)渝利鐵路通車后,重慶到上海的列車設計運行里程是多少千米?(2)專家建議:從安全的角度考慮,實際運行時速減少m%,以便于有充分時間應對突發事件,這樣,從重慶到上海的實際運行時間將增加m%小時,求m的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】

設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現在可以賣出[300+20(60-x)]件,然后根據盈利為6120元即可列出方程解決問題.【題目詳解】解:設售價為x元時,每星期盈利為6120元,

由題意得(x-40)[300+20(60-x)]=6120,

解得:x1=57,x2=1,

由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.

∴每件商品應降價60-57=3元.

故選:A.【題目點撥】本題考查了一元二次方程的應用.此題找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.2、B【解題分析】

根據旋轉的性質得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據三角形外角性質得出∠CFD=∠B+∠BEF,代入求出即可.【題目詳解】解:∵將△ABC繞點A順時針旋轉得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【題目點撥】本題考查了旋轉的性質,全等三角形的性質和判定,三角形內角和定理,三角形外角性質的應用,掌握旋轉變換的性質是解題的關鍵.3、D【解題分析】

根據概率是指某件事發生的可能性為多少,隨著試驗次數的增加,穩定在某一個固定數附近,可得答案.【題目詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數為2的概率為”表示隨著拋擲次數的增加,“拋出朝上的點數為2”這一事件發生的概率穩定在附近,故D符合題意;故選D【題目點撥】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.4、D【解題分析】

解:設小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.5、D【解題分析】

根據中心對稱圖形的概念求解.【題目詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【題目點撥】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、A【解題分析】

根據二次函數圖象所在的象限大致畫出圖形,由此即可得出結論.【題目詳解】∵二次函數圖象只經過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【題目點撥】本題考查了二次函數的性質以及二次函數的圖象,大致畫出函數圖象,利用數形結合解決問題是解題的關鍵.7、A【解題分析】

根據∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【題目詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【題目點撥】此題考查了圓周角的性質與等腰三角形的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.8、A【解題分析】

根據題意先畫出相應的圖形,然后進行推理論證即可得出結論.【題目詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【題目點撥】本題主要借助尺規作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關鍵.9、D【解題分析】

A、由a=1>0,可得出拋物線開口向上,A選項錯誤;B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、由拋物線開口向上,可得出y無最大值,C選項錯誤;D、由拋物線的解析式利用二次函數的性質,即可求出拋物線的對稱軸為直線x=-,D選項正確.綜上即可得出結論.【題目詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項錯誤;B、∵拋物線y=x1-3x+c與y軸的交點為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、∵拋物線開口向上,∴y無最大值,C選項錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項正確.故選D.【題目點撥】本題考查了拋物線與x軸的交點、二次函數的性質、二次函數的最值以及二次函數圖象上點的坐標特征,利用二次函數的性質及二次函數圖象上點的坐標特征逐一分析四個選項的正誤是解題的關鍵.10、A【解題分析】

利用平行線的性質以及相似三角形的性質一一判斷即可.【題目詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【題目點撥】考查平行線的性質,相似三角形的判定和性質,平行線分線段成比例定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.11、D【解題分析】

根據k值的正負性分別判斷一次函數y=kx-k與反比例函數(k≠0)所經過象限,即可得出答案.【題目詳解】解:有兩種情況,當k>0是時,一次函數y=kx-k的圖象經過一、三、四象限,反比例函數(k≠0)的圖象經過一、三象限;當k<0時,一次函數y=kx-k的圖象經過一、二、四象限,反比例函數(k≠0)的圖象經過二、四象限;根據選項可知,D選項滿足條件.故選D.【題目點撥】本題考查了一次函數、反比例函數的圖象.正確這兩種圖象所經過的象限是解題的關鍵.12、C【解題分析】

過點C作,且CQ=CP,連接AQ,PQ,證明≌根據全等三角形的性質,得到根據等腰直角三角形的性質求出PQ的長度,進而根據,即可解決問題.【題目詳解】過點C作,且CQ=CP,連接AQ,PQ,在和中≌AP的最大值是5.故選:C.【題目點撥】考查全等三角形的判定與性質,三角形的三邊關系,作出輔助線是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、>【解題分析】

觀察平均氣溫統計圖可知:乙地的平均氣溫比較穩定,波動小;波動越小越穩定.【題目詳解】解:觀察平均氣溫統計圖可知:乙地的平均氣溫比較穩定,波動小;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【題目點撥】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定.反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.14、或【解題分析】

由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【題目詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據題意,,.若點在矩形ABCD的內部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【題目點撥】本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質;(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據相似三角形對應邊成比例求出三角形的邊長.15、-1【解題分析】試題分析:根據一次函數的圖象經過第二、三、四象限,可以得出k<1,b<1,隨便寫出一個小于1的b值即可.∵一次函數y=﹣2x+b(b為常數)的圖象經過第二、三、四象限,∴k<1,b<1.考點:一次函數圖象與系數的關系16、①②④.【解題分析】

根據菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質一一判斷即可.【題目詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯誤,設△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.【題目點撥】此題考查平行四邊形的性質、菱形的判定和性質、平行線分線段成比例定理、等高模型等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數解決問題.17、12【解題分析】

分別利用零指數冪a0=1(a≠0),負指數冪a-p=1a【題目詳解】解:(π﹣3)0﹣2-1=1-12=1故答案為:12【題目點撥】本題考查了零指數冪和負整數指數冪的運算,掌握運算法則是解題關鍵.18、【解題分析】

求出黑色區域面積與正方形總面積之比即可得答案.【題目詳解】圖中有9個小正方形,其中黑色區域一共有3個小正方形,所以隨意投擲一個飛鏢,擊中黑色區域的概率是,故答案為.【題目點撥】本題考查了幾何概率,熟練掌握概率的計算公式是解題的關鍵.注意面積之比幾何概率.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、.(1)見解析(2)【解題分析】

(1)根據網格結構找出點B、C旋轉后的對應點B′、C′的位置,然后順次連接即可.(2)先求出AC的長,再根據扇形的面積公式列式進行計算即可得解.【題目詳解】解:(1)△AB′C′如圖所示:(2)由圖可知,AC=2,∴線段AC旋轉過程中掃過的扇形的面積.20、探究:證明見解析;應用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解題分析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結論;

應用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結論;

拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論;

(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,

∴∠BAC=∠DAE.

∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,

∴∠BAD=∠CAE.

∵AB=AC,AD=AE,

∴△ABD≌△ACE.

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD.

應用:在Rt△ABC中,AB=AC=,

∴∠ABC=∠ACB=45°,BC=2,

∵CD=1,

∴BD=BC-CD=1,

由探究知,△ABD≌△ACE,

∴∠ACE=∠ABD=45°,

∴∠DCE=90°,

在Rt△BCE中,CD=1,CE=BD=1,

根據勾股定理得,DE=,

∴△DCE的周長為CD+CE+DE=2+

故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE

∴BC=CD-BD=CD-CE,

故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.

∴BD=CE

∴BC=BD-CD=CE-CD,

故答案為BC=CE-CD.21、(1)(2)見解析;(3)P(0,2).【解題分析】分析:(1)根據A,C兩點的坐標即可建立平面直角坐標系.(2)分別作各點關于x軸的對稱點,依次連接即可.(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,即為所求.詳解:(1)(2)如圖所示:(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,則點P即為所求.設直線B1C′的解析式為y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直線AB2的解析式為:y=2x+2,∴當x=0時,y=2,∴P(0,2).點睛:本題主要考查軸對稱圖形的繪制和軸對稱的應用.22、(1);(2)80米/分;(3)6分鐘【解題分析】

(1)根據圖示,設線段AB的表達式為:y=kx+b,把把(4,240),(16,0)代入得到關于k,b的二元一次方程組,解之,即可得到答案,

(2)根據線段OA,求出甲的速度,根據圖示可知:乙在點B處追上甲,根據速度=路程÷時間,計算求值即可,

(3)根據圖示,求出二者相遇時與出發點的距離,進而求出與終點的距離,結合(2)的結果,分別計算出相遇后,到達終點甲和乙所用的時間,二者的時間差即可所求答案.【題目詳解】(1)根據題意得:

設線段AB的表達式為:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即線段AB的表達式為:y=-20x+320(4≤x≤16),

(2)又線段OA可知:甲的速度為:=60(米/分),

乙的步行速度為:=80(米/分),

答:乙的步行速度為80米/分,

(3)在B處甲乙相遇時,與出發點的距離為:240+(16-4)×60=960(米),

與終點的距離為:2400-960=1440(米),

相遇后,到達終點甲所用的時間為:=24(分),

相遇后,到達終點乙所用的時間為:=18(分),

24-18=6(分),

答:乙比甲早6分鐘到達終點.【題目點撥】本題考查了一次函數的應用,正確掌握分析函數圖象是解題的關鍵.23、(1)證明見解析;(2)2.【解題分析】

(1)作輔助線,根據等腰三角形三線合一得BD=CD,根據三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;(2)證明△ODF∽△AEF,列比例式可得結論.【題目詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【題目點撥】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、相似三角形的性質和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關鍵.24、(1)溫馨提示牌和垃圾箱的單價各是50元和150元;(2)答案見解析【解題分析】

(1)根據“購買2個溫馨提示牌和3個垃圾箱共需550元”,建立方程求解即可得出結論;(2)根據“費用不超過10000元和至少需要安放48個垃圾箱”,建立不等式即可得出結論.【題目詳解】(1)設溫情提示牌的單價為x元,則垃圾箱的單價為3x元,根據題意得,2x+3×3x=550,∴x=50,經檢驗,符合題意,∴3x=150元,即:溫馨提示牌和垃圾箱的單價各是50元和150元;(2)設購買溫情提示牌y個(y為正整數),則垃圾箱為(100﹣y)個,根據題意得,意,∴∵y為正整數,∴y為50,51,52,共3中方案;有三種方案:①溫馨提示牌50個,垃圾箱50個,②溫馨提示牌51個,垃圾箱49個,③溫馨提示牌52個,垃圾箱48個,設總費用為w元W=50y+150(100﹣y)=﹣100y+15000,∵k=-100,∴w隨y的增大而減小∴當y=52時,所需資金最少,最少是9800元.【題目點撥】此題主要考查了一元一次不等式組,一元一次方程的應用,正確找出相等關系是解本題的關鍵.25、(1)150;45,36,(2)娛樂(3)1【解題分析】

(1)由“體育”的人數及其所占百分比可得總人數,用總人數減去其它節目的人數即可得求得動畫的人數m,用娛樂的人數除以總人數即可得n的值;(2)根據眾數的定義求解可得;(3)用總人數乘以樣本中喜愛新聞節目的人數所占比例.【題目詳解】解:(1)被調查的學生總數為30÷20%=150(人),m=150?(12+30+54+9)=45,n%=×100%=36%,即n=36,故答案為150,45,36;(2)由題意知,最喜愛電

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論