




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省中學山市小欖鎮重點中學中考聯考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知二次函數的圖象如圖所示,則下列結論:①ac>0;②a-b+c<0;
當時,;,其中錯誤的結論有A.②③ B.②④ C.①③ D.①④2.小明要去超市買甲、乙兩種糖果,然后混合成5千克混合糖果,已知甲種糖果的單價為a元/千克,乙種糖果的單價為b元/千克,且a>b.根據需要小明列出以下三種混合方案:(單位:千克)甲種糖果乙種糖果混合糖果方案1235方案2325方案32.52.55則最省錢的方案為()A.方案1 B.方案2C.方案3 D.三個方案費用相同3.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.4.下列實數中,有理數是()A. B. C.π D.5.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.466.如圖所示,點E是正方形ABCD內一點,把△BEC繞點C旋轉至△DFC位置,則∠EFC的度數是()A.90° B.30° C.45° D.60°7.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣68.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.9.下列運算正確的是()A.a2?a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a10.若,則括號內的數是A. B. C.2 D.8二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按照此做法進行下去,點A8的坐標為__________.12.若分式的值為正數,則x的取值范圍_____.13.一個正多邊形的一個內角是它的一個外角的5倍,則這個多邊形的邊數是_______________14.如圖,小紅將一個正方形紙片剪去一個寬為4cm的長條后,再從剩下的長方形紙片上剪去一個寬為5cm的長條,且剪下的兩個長條的面積相等.問這個正方形的邊長應為多少厘米?設正方形邊長為xcm,則可列方程為_____.15.函數的自變量的取值范圍是.16.如圖是一個幾何體的三視圖(圖中尺寸單位:),根據圖中數據計算,這個幾何體的表面積為__________.三、解答題(共8題,共72分)17.(8分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.18.(8分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數量關系是,位置關系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉,若AC=4,CD=2,請直接寫出△PMN面積的最大值.19.(8分)(1)計算:(2)先化簡,再求值:,其中x是不等式的負整數解.20.(8分)如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.21.(8分)一個不透明的袋子中裝有3個標號分別為1、2、3的完全相同的小球,隨機地摸出一個小球不放回,再隨機地摸出一個小球.采用樹狀圖或列表法列出兩次摸出小球出現的所有可能結果;求摸出的兩個小球號碼之和等于4的概率.22.(10分)如圖,在△ABC中,點D是AB邊的中點,點E是CD邊的中點,過點C作CF∥AB交AE的延長線于點F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.23.(12分)已知P是⊙O外一點,PO交⊙O于點C,OC=CP=2,弦AB⊥OC,∠AOC的度數為60°,連接PB.求BC的長;求證:PB是⊙O的切線.24.如圖,在方格紙上建立平面直角坐標系,每個小正方形的邊長為1.(1)在圖1中畫出△AOB關于x軸對稱的△A1OB1,并寫出點A1,B1的坐標;(2)在圖2中畫出將△AOB繞點O順時針旋轉90°的△A2OB2,并求出線段OB掃過的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
①根據圖象的開口方向,可得a的范圍,根據圖象與y軸的交點,可得c的范圍,根據有理數的乘法,可得答案;
②根據自變量為-1時函數值,可得答案;
③根據觀察函數圖象的縱坐標,可得答案;
④根據對稱軸,整理可得答案.【題目詳解】圖象開口向下,得a<0,
圖象與y軸的交點在x軸的上方,得c>0,ac<,故①錯誤;
②由圖象,得x=-1時,y<0,即a-b+c<0,故②正確;
③由圖象,得
圖象與y軸的交點在x軸的上方,即當x<0時,y有大于零的部分,故③錯誤;
④由對稱軸,得x=-=1,解得b=-2a,
2a+b=0
故④正確;
故選D.【題目點撥】考查了二次函數圖象與系數的關系:二次項系數a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.2、A【解題分析】
求出三種方案混合糖果的單價,比較后即可得出結論.【題目詳解】方案1混合糖果的單價為,方案2混合糖果的單價為,方案3混合糖果的單價為.∵a>b,∴,∴方案1最省錢.故選:A.【題目點撥】本題考查了加權平均數,求出各方案混合糖果的單價是解題的關鍵.3、B【解題分析】
根據軸對稱圖形與中心對稱圖形的概念判斷即可.【題目詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【題目點撥】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.4、B【解題分析】
實數分為有理數,無理數,有理數有分數、整數,無理數有根式下不能開方的,等,很容易選擇.【題目詳解】A、二次根2不能正好開方,即為無理數,故本選項錯誤,
B、無限循環小數為有理數,符合;
C、為無理數,故本選項錯誤;
D、不能正好開方,即為無理數,故本選項錯誤;故選B.【題目點撥】本題考查的知識點是實數范圍內的有理數的判斷,解題關鍵是從實際出發有理數有分數,自然數等,無理數有、根式下開不盡的從而得到了答案.5、B【解題分析】
連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【題目詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【題目點撥】本題考查了相似三角形的應用與三角形的面積,解題的關鍵是熟練的掌握相似三角形的應用與三角形的面積的相關知識點.6、C【解題分析】
根據正方形的每一個角都是直角可得∠BCD=90°,再根據旋轉的性質求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據等腰直角三角形的性質解答.【題目詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【題目點撥】本題目是一道考查旋轉的性質問題——每對對應點到旋轉中心的連線的夾角都等于旋轉角度,每對對應邊相等,故為等腰直角三角形.7、D【解題分析】
根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).【題目詳解】解:0.0000025第一個有效數字前有6個0(含小數點前的1個0),從而.故選D.8、B【解題分析】
根據軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.【題目詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.9、C【解題分析】
根據同底數冪的乘法法則:同底數冪相乘,底數不變,指數相加;合并同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變;冪的乘方法則:底數不變,指數相乘進行計算即可.【題目詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【題目點撥】此題主要考查了冪的乘方、同底數冪的乘法,以及合并同類項,關鍵是掌握計算法則.10、C【解題分析】
根據有理數的減法,減去一個數等于加上這個數的相反數,可得答案.【題目詳解】解:,
故選:C.【題目點撥】本題考查了有理數的減法,減去一個數等于加上這個數的相反數.二、填空題(本大題共6個小題,每小題3分,共18分)11、(128,0)【解題分析】
∵點A1坐標為(1,0),且B1A1⊥x軸,∴B1的橫坐標為1,將其橫坐標代入直線解析式就可以求出B1的坐標,就可以求出A1B1的值,OA1的值,根據銳角三角函數值就可以求出∠xOB3的度數,從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點A2、A3…的坐標規律,最后求出A8的坐標.【題目詳解】點坐標為(1,0),
軸
點的橫坐標為1,且點在直線上
在中由勾股定理,得
,
在中,
.
.
.
.
故答案為.【題目點撥】本題是一道一次函數的綜合試題,也是一道規律試題,考查了直角三角形的性質,特別是所對的直角邊等于斜邊的一半的運用,點的坐標與函數圖象的關系.12、x>1【解題分析】試題解析:由題意得:>0,∵-6<0,∴1-x<0,∴x>1.13、1【解題分析】
設這個正多邊的外角為x°,則內角為5x°,根據內角和外角互補可得x+5x=180,解可得x的值,再利用外角和360°÷外角度數可得邊數.【題目詳解】設這個正多邊的外角為x°,由題意得:x+5x=180,解得:x=30,360°÷30°=1.故答案為:1.【題目點撥】此題主要考查了多邊形的內角和外角,關鍵是計算出外角的度數,進而得到邊數.14、4x=5(x-4)【解題分析】按照面積作為等量關系列方程有4x=5(x﹣4).15、x≠1【解題分析】該題考查分式方程的有關概念根據分式的分母不為0可得X-1≠0,即x≠1那么函數y=的自變量的取值范圍是x≠116、【解題分析】分析:由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其表面積.詳解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據三視圖知:該圓錐的母線長為6cm,底面半徑為2cm,故表面積=πrl+πr2=π×2×6+π×22=16π(cm2).故答案為:16π.點睛:考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.三、解答題(共8題,共72分)17、﹣6+2【解題分析】分析:直接利用二次根式的性質以及絕對值的性質和特殊角的三角函數值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數運算,正確化簡各數是解題關鍵.18、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解題分析】
(1)由等腰直角三角形的性質易證△ACE≌△BCD,由此可得AE=BD,再根據三角形中位線定理即可得到PM=PN,由平行線的性質可得PM⊥PN;(2)(1)中的結論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當BD的值最大時,PM的值最大,△PMN的面積最大,推出當B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【題目詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點P、M、N分別為AD、AB、DE的中點,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當BD的值最大時,PM的值最大,△PMN的面積最大,∴當B、C、D共線時,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【題目點撥】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質、全等三角形的判定與性質、三角形中位線定理的運用,解題的關鍵是正確尋找全等三角形解決問題,學會利用三角形的三邊關系解決最值問題,屬于中考壓軸題.19、(1)5;(2),3.【解題分析】試題分析:(1)原式先計算乘方運算,再計算乘運算,最后算加減運算即可得到結果;(2)先化簡,再求得x的值,代入計算即可.試題解析:(1)原式=1-2+1×2+4=5;(2)原式=×=,當3x+7>1,即x>-2時的負整數時,(x=-1)時,原式==3..20、(1)證明見解析;(2)AC=4.【解題分析】
(1)連接,根據切線的性質得到,根據垂直的定義得到,得到,然后根據圓周角定理證明即可;(2)設的半徑為,根據余弦的定義、勾股定理計算即可.【題目詳解】(1)連接.∵射線切于點,.,,,,,由圓周角定理得:,;(2)由(1)可知:,,,,,設的半徑為,則,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【題目點撥】本題考查了切線的性質、圓周角定理以及解直角三角形,掌握切線的性質定理、圓周角定理、余弦的定義是解題的關鍵.21、(1)見解析;(2).【解題分析】
(1)畫樹狀圖列舉出所有情況;
(2)讓摸出的兩個球號碼之和等于4的情況數除以總情況數即為所求的概率.【題目詳解】解:(1)根據題意,可以畫出如下的樹形圖:從樹形圖可以看出,兩次摸球出現的所有可能結果共有6種.(2)由樹狀圖知摸出的兩個小球號碼之和等于4的有2種結果,∴摸出的兩個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全車輛測試題及答案
- 提升工作坊的數字時代互動與溝通能力培訓方法研究
- 基于大數據的胃腸健康管理決策支持系統
- 教育游戲化中數字資源的評估與選擇
- 微處理器硅前性能驗證方法的深度剖析與創新探索
- 張家口市中小學足球教師資源現狀與優化策略研究
- 平衡針干預對腰椎間盤突出神經根壓迫癥狀大鼠的療效及機制研究
- 實驗性矽肺小鼠肺部與腸道微生物群特征及關聯研究
- 大學生旅游心理問題及咨詢策略研究
- 教育創新者論壇聚焦教育變革
- 自動化機構設計基礎
- 厭學怎么辦-主題班會課件
- 公務用車租賃服務采購項目比選文件
- 香港認可的大陸工作證明范本
- 新建混凝土路面道路工程施工工程投標書(技術方案)
- 旁站記錄新表(腳手架拆除)
- 低壓柜開關更換施工方案
- 織金新型能源化工基地污水處理廠及配套管網工程-茶店污水處理廠環評報告
- 陜西省2023年中考英語真題(附答案)
- 智慧能源(電力)大數據平臺建設方案
- 《兩個神秘的小鞋匠》課件
評論
0/150
提交評論