高二數學必修基礎的知識要點_第1頁
高二數學必修基礎的知識要點_第2頁
高二數學必修基礎的知識要點_第3頁
高二數學必修基礎的知識要點_第4頁
高二數學必修基礎的知識要點_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

高二數學必修基礎的知識要點高二數學必修基礎的知識要點11、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.2、圓的方程(1)標準方程,圓心,半徑為r;(2)一般方程當時,方程表示圓,此時圓心為,半徑為當時,表示一個點;當時,方程不表示任何圖形.(3)求圓方程的:一般都采用待定系數法:先設后求.確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.3、高中數學必修二知識點:直線與圓的位置關系:直線與圓的位置關系有相離,相切,相交三種情況:(1)設直線,圓,圓心到l的距離為,則有;;(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.設圓,兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.當時兩圓外離,此時有公切線四條;當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當時,兩圓內切,連心線經過切點,只有一條公切線;當時,兩圓內含;當時,為同心圓.注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線5、空間點、直線、平面的位置關系公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內.應用:判斷直線是否在平面內用符號語言表示公理1:公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線符號:平面α和β相交,交線是a,記作α∩β=a.符號語言:公理2的作用:它是判定兩個平交的方法.它說明兩個平面的交線與兩個平面公共點之間的關系:交線公共點.它可以判斷點在直線上,即證若干個點共線的重要依據.公理3:經過不在同一條直線上的三點,有且只有一個平面.推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.公理3及其推論作用:它是空間內確定平面的依據它是證明平面重合的依據公理4:平行于同一條直線的兩條直線互相平行高二數學必修基礎的知識要點2集合的分類:(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集關于集合的概念:(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。(3)無序性:判斷一些對象時候構成集合,關鍵在于看這些對象是否有明確的標準。集合可以根據它含有的元素的個數分為兩類:含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。非負整數全體構成的集合,叫做自然數集,記作N;在自然數集內排除0的集合叫做正整數集,記作N+或N_;整數全體構成的集合,叫做整數集,記作Z;有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的'點一一對應的數。)1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質來描述。例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大于0”而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質p(x),而不屬于集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特征性質。于是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質描述法,簡稱描述法。例如:集合A={x∈R│x2-1=0}的特征是X2-1=0高二數學必修基礎的知識要點3函數的單調性、奇偶性、周期性單調性:定義:注意定義是相對與某個具體的區間而言。判定方法有:定義法(作差比較和作商比較)導數法(適用于多項式函數)復合函數法和圖像法。應用:比較大小,證明不等式,解不等式。奇偶性:定義:注意區間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。判別方法:定義法,圖像法,復合函數法應用:把函數值進行轉化求解。周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.應用:求函數值和某個區間上的函數解析式。四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)平移變換y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過平移得到函數y=f(2x+4)的圖象。(ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。對稱變換y=f(x)→y=f(-x),關于y軸對稱y=f(x)→y=-f(x),關于x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論