




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省灌南縣中考數學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運動員射擊一次,命中靶心C.任意畫一個三角形,其內角和是180°D.拋一枚硬幣,落地后正面朝上2.在一張考卷上,小華寫下如下結論,記正確的個數是m,錯誤的個數是n,你認為有公共頂點且相等的兩個角是對頂角若,則它們互余A.4 B. C. D.3.下列運算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x64.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm25.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.26.世界因愛而美好,在今年我校的“獻愛心”捐款活動中,九年級三班50名學生積極加獻愛心捐款活動,班長將捐款情況進行了統計,并繪制成了統計圖,根據圖中提供的信息,捐款金額的眾數和中位數分別是A.20、20 B.30、20 C.30、30 D.20、307.已知二次函數y=a(x﹣2)2+c,當x=x1時,函數值為y1;當x=x2時,函數值為y2,若|x1﹣2|>|x2﹣2|,則下列表達式正確的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>08.下列計算正確的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a29.如圖,正方形ABCD的邊長為2cm,動點P從點A出發,在正方形的邊上沿A→B→C的方向運動到點C停止,設點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關于x(cm)的函數關系的圖象是()A. B. C. D.10.某籃球運動員在連續7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數據的眾數與中位數分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分二、填空題(共7小題,每小題3分,滿分21分)11.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.12.如圖,直線y=2x+4與x,y軸分別交于A,B兩點,以OB為邊在y軸右側作等邊三角形OBC,將點C向左平移,使其對應點C′恰好落在直線AB上,則點C′的坐標為.13.已知一組數據,,﹣2,3,1,6的中位數為1,則其方差為____.14.一個不透明的口袋中有5個紅球,2個白球和1個黑球,它們除顏色外完全相同,從中任意摸出一個球,則摸出的是紅球的概率是_____.15.方程x-1=的解為:______.16.在△ABC中,∠C=90°,若tanA=,則sinB=______.17.如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是_____.三、解答題(共7小題,滿分69分)18.(10分)為落實“垃圾分類”,環衛部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.19.(5分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.20.(8分)計算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.21.(10分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.22.(10分)如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).(1)求點B的坐標;(2)求經過A、O、B三點的拋物線的函數表達式;(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.23.(12分)如圖,在平面直角坐標中,點O是坐標原點,一次函數y1=kx+b與反比例函數y2=的圖象交于A(1,m)、B(n,1)兩點.(1)求直線AB的解析式;(2)根據圖象寫出當y1>y2時,x的取值范圍;(3)若點P在y軸上,求PA+PB的最小值.24.(14分)已知:關于x的方程x2﹣(2m+1)x+2m=0(1)求證:方程一定有兩個實數根;(2)若方程的兩根為x1,x2,且|x1|=|x2|,求m的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】分析:必然事件就是一定發生的事件,依據定義即可作出判斷.詳解:A、三角形的外心到三角形的三個頂點的距離相等,三角形的內心到三邊的距離相等,是不可能事件,故本選項不符合題意;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項不符合題意;C、三角形的內角和是180°,是必然事件,故本選項符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機事件,故本選項不符合題意;故選C.點睛:解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.2、D【解題分析】
首先判斷出四個結論的錯誤個數和正確個數,進而可得m、n的值,再計算出即可.【題目詳解】解:有公共頂點且相等的兩個角是對頂角,錯誤;
,正確;
,錯誤;
若,則它們互余,錯誤;
則,,
,
故選D.【題目點撥】此題主要考查了二次根式的乘除、對頂角、科學記數法、余角和負整數指數冪,關鍵是正確確定m、n的值.3、D【解題分析】
根據同底數冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,逐項判定即可.【題目詳解】∵(a3)2=a6,∴選項A不符合題意;∵(-x)2÷x=x,∴選項B不符合題意;∵a3(-a)2=a5,∴選項C不符合題意;∵(-2x2)3=-8x6,∴選項D符合題意.故選D.【題目點撥】此題主要考查了同底數冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,要熟練掌握.4、A【解題分析】
根據已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【題目詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【題目點撥】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.5、B【解題分析】
首先求得AB的中點D的坐標,然后求得經過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【題目詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數y=-x上,∴設過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數解析式是y=x-1.根據題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.
故選:B【題目點撥】本題考查了待定系數法求函數的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關鍵.6、C【解題分析】分析:由表提供的信息可知,一組數據的眾數是這組數中出現次數最多的數,而中位數則是將這組數據從小到大(或從大到小)依次排列時,處在最中間位置的數,據此可知這組數據的眾數,中位數.詳解:根據右圖提供的信息,捐款金額的眾數和中位數分別是30,30.故選C.點睛:考查眾數和中位數的概念,熟記概念是解題的關鍵.7、C【解題分析】
分a>1和a<1兩種情況根據二次函數的對稱性確定出y1與y2的大小關系,然后對各選項分析判斷即可得解.【題目詳解】解:①a>1時,二次函數圖象開口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,②a<1時,二次函數圖象開口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,綜上所述,表達式正確的是a(y1﹣y2)>1.故選:C.【題目點撥】本題主要考查二次函數的性質,利用了二次函數的對稱性,關鍵要掌握根據二次項系數a的正負分情況討論.8、B【解題分析】
利用完全平方公式及平方差公式計算即可.【題目詳解】解:A、原式=a2-6a+9,本選項錯誤;
B、原式=a2-9,本選項正確;
C、原式=a2-2ab+b2,本選項錯誤;
D、原式=a2+2ab+b2,本選項錯誤,
故選:B.【題目點撥】本題考查了平方差公式和完全平方公式,熟練掌握公式是解題的關鍵.9、B【解題分析】
△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數關系的圖象.【題目詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數關系的圖象是B;故選B.【題目點撥】本題考查了動點函數圖象問題,用到的知識點是三角形的面積、一次函數,在圖象中應注意自變量的取值范圍.10、D【解題分析】分析:根據中位數和眾數的定義求解:眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數.詳解:將數據重新排列為17、18、18、20、20、20、23,所以這組數據的眾數為20分、中位數為20分,故選:D.點睛:本題考查了確定一組數據的中位數和眾數的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數.二、填空題(共7小題,每小題3分,滿分21分)11、17【解題分析】
先利用完全平方公式展開,然后再求和.【題目詳解】根據(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【題目點撥】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.12、(﹣2,2)【解題分析】試題分析:∵直線y=2x+4與y軸交于B點,∴x=0時,得y=4,∴B(0,4).∵以OB為邊在y軸右側作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點縱坐標為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標為(﹣2,2).考點:2.一次函數圖象上點的坐標特征;2.等邊三角形的性質;3.坐標與圖形變化-平移.13、3【解題分析】試題分析:∵數據﹣3,x,﹣3,3,3,6的中位數為3,∴,解得x=3,∴數據的平均數=(﹣3﹣3+3+3+3+6)=3,∴方差=[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案為3.考點:3.方差;3.中位數.14、【解題分析】
根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.【題目詳解】解:由于共有8個球,其中紅球有5個,則從袋子中隨機摸出一個球,摸出紅球的概率是.故答案為.【題目點撥】本題考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.15、【解題分析】
兩邊平方解答即可.【題目詳解】原方程可化為:(x-1)2=1-x,
解得:x1=0,x2=1,
經檢驗,x=0不是原方程的解,x=1是原方程的解
故答案為.【題目點撥】此題考查無理方程的解法,關鍵是把兩邊平方解答,要注意解答后一定要檢驗.16、【解題分析】分析:直接根據題意表示出三角形的各邊,進而利用銳角三角函數關系得出答案.詳解:如圖所示:∵∠C=90°,tanA=,∴設BC=x,則AC=2x,故AB=x,則sinB=.故答案為:.點睛:此題主要考查了銳角三角函數關系,正確表示各邊長是解題關鍵.17、(3,2).【解題分析】
根據題意得出y軸位置,進而利用正多邊形的性質得出E點坐標.【題目詳解】解:如圖所示:∵A(0,a),∴點A在y軸上,∵C,D的坐標分別是(b,m),(c,m),∴B,E點關于y軸對稱,∵B的坐標是:(﹣3,2),∴點E的坐標是:(3,2).故答案為:(3,2).【題目點撥】此題主要考查了正多邊形和圓,正確得出y軸的位置是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)(2).【解題分析】
(1)根據總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現的所有可能,及符合條件的可能,根據概率公式求解即可.【題目詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.19、(1)證明:∵ABCD是平行四邊形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解題分析】證明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF20、-1【解題分析】分析:根據零次冪、絕對值以及負指數次冪的計算法則求出各式的值,然后進行求和得出答案.詳解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.點睛:本題主要考查的是實數的計算法則,屬于基礎題型.理解各種計算法則是解決這個問題的關鍵.21、(1)證明見解析;(2)證明見解析;(3).【解題分析】
(1)欲證明DB=DE.,只要證明∠DBE=∠DEB;
(2)欲證明CF是⊙O的切線.,只要證明BC⊥CF即可;(3)根據S陰影部分S扇形S△OBD計算即可.【題目詳解】解:(1)∵E是△ABC的內心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE(2)連接CD∵DA平分∠BAC,∴∠DAB=∠DAC,∴BD=CD,又∵BD=DF,∴CD=DB=DF,∴∴BC⊥CF,∴CF是⊙O的切線(3)連接OD∵O、D是BC、BF的中點,CF4,∴OD2.∵CF是⊙O的切線,∴∴△BOD為等腰直角三角形∴S陰影部分S扇形S△OBD.【題目點撥】本題考查數學圓的綜合題,考查了圓的切線的證明,扇形的面積公式等,注意切線的證明方法,是高頻考點.22、(1)B(-1.2);(2)y=;(3)見解析.【解題分析】
(1)過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點坐標;(2)根據A、B、O三點的坐標,利用待定系數法可求得拋物線解析式;(3)由四邊形ABOP可知點P在線段AO的下方,過P作PE∥y軸交線段OA于點E,可求得直線OA解析式,設出P點坐標,則可表示出E點坐標,可表示出PE的長,進一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數的性質可求得其面積最大時P點的坐標.【題目詳解】(1)如圖1,過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點,∴可設拋物線解析式為y=ax2+bx,把A、B兩點坐標代入可得,解得,∴經過A、B、O原點的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點P在線段OA的下方,過P作PE∥y軸交AO于點E,如圖2,設直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設P點坐標為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當t=1時,四邊形ABOP的面積最大,此時P點坐標為(1,-),綜上可知存在使四邊形ABOP的面積最大的點P,其坐標為(1,-).【題目點撥】本題為二次函數的綜合應用,主要涉及待定系數法、等腰直角三角形的性質、全等三角形的判定和性質、三角形的面積以及方程思想等知識.在(1)中構造三角形全等是解題的關鍵,在(2)中注意待定系數法的應用,在(3)中用t表示出四邊形ABOP的面積是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.23、(1)y=﹣x+4;(2)1<x<1;(1)2.【解題分析】
(1)依據反比例函數y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點,即可得到A(1,1)、B(1,1),代入一次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股東對公司借款及資金用途協議
- 股權100%轉讓及環保項目合作開發合同
- 礦山監控建設方案
- 裝修公司聯動方案
- 物業工作方案
- 租賃企業整改方案模板
- 商場安全設備方案
- 地面修復改造方案
- 編織安全工作評估方案
- 物業絡配置方案模板
- 檢查檢驗結果互認工作管理制度
- 光伏電站安全生產管理制度匯編
- 農村小學生科技活動方案
- 2025年健身與體育專業知識與實務考試試題及答案
- 電腦設備報廢管理制度
- 中國大蒜及深加工行業發展趨勢及投資前景預測報告
- 2025年安全生產月知識測試試卷(附答案)
- 2025至2030中國雙酚TMC行業發展趨勢分析與未來投資戰略咨詢研究報告
- 加油站油品品質管理制度
- 播音與主持專業教學標準(中等職業教育)2025修訂
- 2025年中國大米加工行業發展潛力分析及投資方向研究報告
評論
0/150
提交評論