高二數學人教版知識點_第1頁
高二數學人教版知識點_第2頁
高二數學人教版知識點_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

高二數學人教版知識點高二重要知識點歸納數列定義:如果一個數列從第二項起,每一項與它的前一項的差等于同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。等差數列的通項公式為:an=a1+(n-1)d(1)前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)以上n均屬于正整數。解釋說明:從(1)式可以看出,an是n的一次函數(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的平均數。且任意兩項am,an的關系為:an=am+(n-m)d它可以看作等差數列廣義的通項公式。推論_式:從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。基本公式:和=(首項+末項)×項數÷2項數=(末項-首項)÷公差+1首項=2和÷項數-末項末項=2和÷項數-首項末項=首項+(項數-1)×公差高二數學必修五知識點1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.2、圓的方程(1)標準方程,圓心,半徑為r;(2)一般方程當時,方程表示圓,此時圓心為,半徑為當時,表示一個點;當時,方程不表示任何圖形.(3)求圓方程的:一般都采用待定系數法:先設后求.確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.3、高中數學必修二知識點:直線與圓的位置關系:直線與圓的位置關系有相離,相切,相交三種情況:(1)設直線,圓,圓心到l的距離為,則有;;(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.設圓,兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.當時兩圓外離,此時有公切線四條;當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當時,兩圓內切,連心線經過切點,只有一條公切線;當時,兩圓內含;當時,為同心圓.注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線5、空間點、直線、平面的位置關系公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內.應用:判斷直線是否在平面內用符號語言表示公理1:公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線符號:平面α和β相交,交線是a,記作α∩β=a.高二數學必修四知識點1.人教版高中數學正弦二倍角公式:sin2α=2cosαsinα推導:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2]1+sin2A=(sinA+cosA)^22.人教版高中數學余弦二倍角公式:余弦二倍角公式有三組表示形式,三組形式等價。(1)Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2](2)Cos2a=1-2Sina^2(3)Cos2a=2Cosa^2-1推導:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^23.人教版高中數學正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]推導:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]降冪公式:cosA^2=[1+cos2A]/2sin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論