山西省太原市育英中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
山西省太原市育英中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
山西省太原市育英中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
山西省太原市育英中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
山西省太原市育英中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山西省太原市育英中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓與圓在第二象限的交點(diǎn)是點(diǎn),是橢圓的左焦點(diǎn),為坐標(biāo)原點(diǎn),到直線的距離是,則橢圓的離心率是()A. B.C. D.2.已知梯形ABCD中,,,且對角線交于點(diǎn)E,過點(diǎn)E作與AB所在直線的平行線l.若AB和CD所在直線的方程分別是與,則直線l與CD所在直線的距離為()A.1 B.2C.3 D.43.我國新冠肺炎疫情防控進(jìn)入常態(tài)化,各地有序進(jìn)行疫苗接種工作,下面是我國甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量4.已知是偶函數(shù)的導(dǎo)函數(shù),.若時,,則使得不等式成立的的取值范圍是()A. B.C. D.5.設(shè)P是雙曲線上的點(diǎn),若,是雙曲線的兩個焦點(diǎn),則()A.4 B.5C.8 D.106.在等差數(shù)列中,為其前項(xiàng)和,若.則()A. B.C. D.7.是數(shù)列,,,-17,中的第幾項(xiàng)()A第項(xiàng) B.第項(xiàng)C.第項(xiàng) D.第項(xiàng)8.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥09.已知五個數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,則該樣本標(biāo)準(zhǔn)差為()A.1 B.C. D.210.已知函數(shù)的部分圖象與軸交于點(diǎn),與軸的一個交點(diǎn)為,如圖所示,則下列說法錯誤的是()A. B.的最小正周期為6C.圖象關(guān)于直線對稱 D.在上單調(diào)遞減11.已知正三棱柱的側(cè)棱長與底面邊長相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于A. B.C. D.12.已知拋物線的焦點(diǎn)為F,過F作斜率為2的直線l與拋物線交于A,B兩點(diǎn),若弦的中點(diǎn)到拋物線準(zhǔn)線的距離為3,則拋物線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知球的表面積為,則該球的體積為______.14.若,滿足約束條件,則的最小值為__________15.已知實(shí)數(shù),,,滿足,,,則的最大值是______16.橢圓的左焦點(diǎn)為,M為橢圓上的一點(diǎn),N是的中點(diǎn),O為原點(diǎn),若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為6.(1)求拋物線的方程;(2)若不過原點(diǎn)的直線與拋物線交于A、B兩點(diǎn),且,求證:直線過定點(diǎn)并求出定點(diǎn)坐標(biāo).18.(12分)已知橢圓E的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過,,三點(diǎn),求橢圓E的標(biāo)準(zhǔn)方程19.(12分)如圖,已知拋物線的焦點(diǎn)為F,拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1(1)求拋物線C的方程;(2)過點(diǎn)F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于C,D兩點(diǎn),M,N分別為弦AB,CD的中點(diǎn),求|MF|·|NF|的最小值20.(12分)已知命題p:實(shí)數(shù)x滿足;命題q:實(shí)數(shù)x滿足.若p是q的必要條件,求實(shí)數(shù)a的取值范圍21.(12分)已知圓C經(jīng)過坐標(biāo)原點(diǎn)O和點(diǎn)(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點(diǎn),求所得弦長值22.(10分)為落實(shí)國家扶貧攻堅(jiān)政策,某地區(qū)應(yīng)上級扶貧辦的要求,對本地區(qū)所有貧困戶每年年底進(jìn)行收入統(tǒng)計,下表是該地區(qū)貧困戶從2017年至2020年的收入統(tǒng)計數(shù)據(jù):(其中y為貧困戶的人均年純收入)年份2017年2018年2019年2020年年份代碼1234人均年純收入y/百元25283235(1)在給定的坐標(biāo)系中畫出A貧困戶的人均年純收入關(guān)于年份代碼的散點(diǎn)圖;(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計A貧困戶在年能否脫貧.(注:假定脫貧標(biāo)準(zhǔn)為人均年純收入不低于元)參考公式:,參考數(shù)據(jù):,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因?yàn)閳A,可得,過點(diǎn)作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因?yàn)?,所以橢圓的離心率為.故選:B【點(diǎn)睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.2、B【解析】先求得直線AB和CD之間的距離,再求直線l與CD所在直線的距離即可解決.【詳解】梯形ABCD中,,,且對角線交于點(diǎn)E,則有△與△相似,相似比為,則,點(diǎn)E到CD所在直線的距離為AB和CD所在直線距離的又AB和CD所在直線的距離為,則直線l與CD所在直線的距離為2故選:B3、C【解析】由折線圖逐項(xiàng)分析得到答案.【詳解】對于選項(xiàng)A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項(xiàng)A正確;對于選項(xiàng)B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%,故選項(xiàng)B正確;對于選項(xiàng)C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項(xiàng)C錯誤;對于選項(xiàng)D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.4、C【解析】構(gòu)造函數(shù),分析函數(shù)在上的單調(diào)性,將所求不等式變形為,可得出關(guān)于的不等式,即可得解.【詳解】構(gòu)造函數(shù),其中,則,所以,函數(shù)為上的奇函數(shù),當(dāng)時,,且不恒為零,所以,函數(shù)在上為增函數(shù),且該函數(shù)在上也為增函數(shù),故函數(shù)在上為增函數(shù),因?yàn)?,則,由得,可得,解得故選:C.5、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C6、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.7、C【解析】利用等差數(shù)列的通項(xiàng)公式即可求解【詳解】設(shè)數(shù)列,,,,是首項(xiàng)為,公差d=-4的等差數(shù)列{},,令,得故選:C8、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.9、B【解析】先求出的值,然后利用標(biāo)準(zhǔn)差公式求解即可【詳解】解:因?yàn)槲鍌€數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,所以,解得,所以標(biāo)準(zhǔn)差,故選:B10、D【解析】根據(jù)函數(shù)的圖象求出,再利用函數(shù)的性質(zhì)結(jié)合周期公式逆推即可求解.【詳解】因?yàn)楹瘮?shù)的圖象與軸交于點(diǎn),所以,又,所以,A正確;因?yàn)榈膱D象與軸的一個交點(diǎn)為,即,所以,又,解得,所以,所以,求得最小正周期為,B正確;,所以是的一條對稱軸,C正確;令,解得,所以函數(shù)在,上單調(diào)遞減,D錯誤故選:D.11、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設(shè)棱長為,則,故,.點(diǎn)睛:本題主要考查空間立體幾何直線與平面的位置關(guān)系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結(jié)構(gòu)特征.由于題目所給幾何體為直三棱柱,故側(cè)棱和底面垂直,這是一個重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.12、B【解析】設(shè)出直線,并與拋物線聯(lián)立,得到,再根據(jù)拋物線的定義建立等式即可求解.【詳解】因?yàn)橹本€l的方程為,即,由消去y,得,設(shè),則,又因?yàn)橄业闹悬c(diǎn)到拋物線的準(zhǔn)線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)球半徑為,由球表面積求出,然后可得球的體積【詳解】設(shè)球半徑為,∵球的表面積為,∴,∴,∴該球的體積為故答案為【點(diǎn)睛】解答本題的關(guān)鍵是熟記球的表面積和體積公式,解題時由條件求得球的半徑后可得所求結(jié)果14、【解析】作出線性約束條件的可行域,再利用截距的幾何意義求最小值;【詳解】約束條件的可行域,如圖所示:目標(biāo)函數(shù)在點(diǎn)取得最小值,即.故答案為:15、10【解析】采用數(shù)形結(jié)合法,將所求問題轉(zhuǎn)化為兩點(diǎn)到直線的距離和的倍,結(jié)合梯形中位線性質(zhì)和三角形三邊關(guān)系可求得答案.【詳解】由,,,可知,點(diǎn)在圓上,由,即為等腰直角三角形,結(jié)合點(diǎn)到直線距離公式可理解為圓心到直線的距離,變形得,即所求問題可轉(zhuǎn)化為兩點(diǎn)到直線的距離和的倍,作于于,中點(diǎn)為,中點(diǎn)為,由梯形中位線性質(zhì)可得,,作于,于,連接,則,當(dāng)且僅當(dāng)與重合,三點(diǎn)共線時,有最大值,由點(diǎn)到直線距離公式可得,由幾何性質(zhì)可得,,此時,故的最大值為.故答案為:10.16、4【解析】根據(jù)三角形的中位線定理,結(jié)合橢圓的定義即可求得答案.【詳解】橢圓的左焦點(diǎn)為,如圖,設(shè)右焦點(diǎn)為,則,由N是的中點(diǎn),O為得中點(diǎn),,故,又,所以,故答案為:4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,定點(diǎn)坐標(biāo)為(8,0).【解析】(1)根據(jù)拋物線的定義,即可求出結(jié)果;(2)由題意直線方程可設(shè)為,將其與拋物線方程聯(lián)立,再將轉(zhuǎn)化為,根據(jù)韋達(dá)定理,化簡求解,即可求出定點(diǎn).【小問1詳解】解:拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn),設(shè)拋物線的方程為,到焦點(diǎn)的距離為6,即有點(diǎn)到準(zhǔn)線的距離為6,即解得,即拋物線的標(biāo)準(zhǔn)方程為;【小問2詳解】證明:由題意知直線不能與軸平行,故直線方程可設(shè)為,與拋物線聯(lián)立得,消去得,設(shè),則,則,,由,可得,所以,即,亦即,又,解得,所以直線方程為,易得直線過定點(diǎn).18、【解析】分橢圓的焦點(diǎn)在軸上與焦點(diǎn)在軸上,兩種情況討論,利用待定系數(shù)法求出橢圓方程;【詳解】解:(1)當(dāng)橢圓的焦點(diǎn)在軸上時,設(shè)其方程為(),則又點(diǎn)C在橢圓上,得,解得,所以橢圓E的方程為(2)當(dāng)橢圓的焦點(diǎn)在軸上時,設(shè)其方程為(),則又點(diǎn)C在橢圓上,得,解得,這與矛盾綜上可知,橢圓的方程為19、(1)(2)8【解析】(1)由拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進(jìn)而求得的坐標(biāo),得到的表達(dá)式,結(jié)合基本不等式,即可求解.【小問1詳解】解:因?yàn)閽佄锞€C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,解得,所以拋物線C的方程為【小問2詳解】解:由(1)可知焦點(diǎn)為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點(diǎn)A(x1,y1),B(x2,y2),則,因?yàn)镸(xM,yM)為弦AB的中點(diǎn),所以,由,得,所以點(diǎn),同理可得,所以,=,所以,當(dāng)且僅當(dāng),即時,等號成立,所以的最小值為20、【解析】由題設(shè)得是為真時的子集,即,法一:討論、,根據(jù)集合的包含關(guān)系求參數(shù)范圍;法二:利用在恒成立,結(jié)合參變分離及指數(shù)函數(shù)的單調(diào)性求參數(shù)范圍.【詳解】由,得,則命題對應(yīng)的集合為,設(shè)命題對應(yīng)的集合為,是的必要條件,則,由,得,又,法一:若時,,則,顯然成立;若時,,則,可得,綜上:法二:在恒成立,即,∵在單調(diào)遞減,∴.21、(1)(2)【解析】(1)求出圓心和半徑,寫出圓的方程;(2)求出圓心到直線距離,進(jìn)而利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論