




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
烏魯木齊七年級下冊數學期末試卷測試卷(含答案解析)一、解答題1.已知,AB∥CD,點E為射線FG上一點.(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當點E在FG延長線上時,此時CD與AE交于點H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關系,請說明你的結論;(3)如圖3,當點E在FG延長線上時,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數.2.已知,定點,分別在直線,上,在平行線,之間有一動點.(1)如圖1所示時,試問,,滿足怎樣的數量關系?并說明理由.(2)除了(1)的結論外,試問,,還可能滿足怎樣的數量關系?請畫圖并證明(3)當滿足,且,分別平分和,①若,則__________°.②猜想與的數量關系.(直接寫出結論)3.閱讀下面材料:小亮同學遇到這樣一個問題:已知:如圖甲,ABCD,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補充完整.證明:過點E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點A,B在直線a上,點C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點E.①如圖1,當點B在點A的左側時,若∠ABC=60°,∠ADC=70°,求∠BED的度數;②如圖2,當點B在點A的右側時,設∠ABC=α,∠ADC=β,請你求出∠BED的度數(用含有α,β的式子表示).4.已知直線,點P為直線、所確定的平面內的一點.(1)如圖1,直接寫出、、之間的數量關系;(2)如圖2,寫出、、之間的數量關系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數.5.直線AB∥CD,點P為平面內一點,連接AP,CP.(1)如圖①,點P在直線AB,CD之間,當∠BAP=60°,∠DCP=20°時,求∠APC的度數;(2)如圖②,點P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數量關系,并說明理由;(3)如圖③,點P在直線CD下方,當∠BAK=∠BAP,∠DCK=∠DCP時,寫出∠AKC與∠APC之間的數量關系,并說明理由.二、解答題6.如圖1,點O在上,,射線交于點C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點E,則______;(3)若將繞點O逆時針旋轉,其余條件都不變,在旋轉過程中,的度數是否發生變化?請說明你的結論.7.已知直線,點分別為,上的點.(1)如圖1,若,,,求與的度數;(2)如圖2,若,,,則_________;(3)若把(2)中“,,”改為“,,”,則_________.(用含的式子表示)8.如圖1,D是△ABC延長線上的一點,CEAB.(1)求證:∠ACD=∠A+∠B;(2)如圖2,過點A作BC的平行線交CE于點H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度數.(3)如圖3,AHBD,G為CD上一點,Q為AC上一點,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN與∠ACB的關系,說明理由.9.如圖,兩個形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點P逆時針旋轉.(1)①如圖1,∠DPC=度.②我們規定,如果兩個三角形只要有一組邊平行,我們就稱這兩個三角形為“孿生三角形”,如圖1,三角板BPD不動,三角板PAC從圖示位置開始每秒10°逆時針旋轉一周(0°旋轉360°),問旋轉時間t為多少時,這兩個三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉,轉速3°/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉,轉速2°/秒,在兩個三角板旋轉過程中,(PC轉到與PM重合時,兩三角板都停止轉動).設兩個三角板旋轉時間為t秒,以下兩個結論:①為定值;②∠BPN+∠CPD為定值,請選擇你認為對的結論加以證明.10.綜合與探究綜合與實踐課上,同學們以“一個含角的直角三角尺和兩條平行線”為背景開展數學活動,如圖,已知兩直線,,且,三角形是直角三角形,,,操作發現:(1)如圖1.,求的度數;(2)如圖2.創新小組的同學把直線向上平移,并把的位置改變,發現,請說明理由.實踐探究:(3)填密小組在創新小組發現的結論的基礎上,將圖2中的圖形繼續變化得到圖3,平分,此時發現與又存在新的數量關系,請寫出與的數量關系并說明理由.三、解答題11.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關系,并證明你的結論.12.在中,射線平分交于點,點在邊上運動(不與點重合),過點作交于點.(1)如圖1,點在線段上運動時,平分.①若,,則_____;若,則_____;②試探究與之間的數量關系?請說明理由;(2)點在線段上運動時,的角平分線所在直線與射線交于點.試探究與之間的數量關系,并說明理由.13.(生活常識)射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經過兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經過兩次反射,得到反射光線CD,光線AB與CD相交于點E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經過兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點E,∠BED=β,α與β之間滿足的等量關系是.(直接寫出結果)14.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數;(2)如圖②,若把“⊥”變成“點F在DA的延長線上,”,其它條件不變,求的度數;(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.15.互動學習課堂上某小組同學對一個課題展開了探究.小亮:已知,如圖三角形,點是三角形內一點,連接,,試探究與,,之間的關系.小明:可以用三角形內角和定理去解決.小麗:用外角的相關結論也能解決.(1)請你在橫線上補全小明的探究過程:∵,(______)∴,(等式性質)∵,∴,∴.(______)(2)請你按照小麗的思路完成探究過程;(3)利用探究的結果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點,,,則______;③如圖③,,的十等分線相交于點、、、…、,若,,則的度數為______;④如圖④,,的角平分線交于點,則,與之間的數量關系是______;⑤如圖⑤,,的角平分線交于點,,,求的度數.【參考答案】一、解答題1.(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據平行線的性質得到,,即可求得;(2)過過作,根據平行線的性質得到,,即;(3)設,則,通過三角形內角和得到,由角平分線解析:(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據平行線的性質得到,,即可求得;(2)過過作,根據平行線的性質得到,,即;(3)設,則,通過三角形內角和得到,由角平分線定義及得到,求出的值再通過三角形內角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設,則,,,又,,,平分,,,,即,解得,,.【點睛】本題主要考查了平行線的性質和判定,正確做出輔助線是解決問題的關鍵.2.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間有一動點,因此需要對點的位置進行分類討論:如圖1,當點在的左側時,,,滿足數量關系為:;(2)當點在的右側時,,,滿足數量關系為:;(3)①若當點在的左側時,;當點在的右側時,可求得;②結合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點作,,,,,,;(2)如圖2,當點在的右側時,,,滿足數量關系為:;過點作,,,,,,;(3)①如圖3,若當點在的左側時,,,,分別平分和,,,;如圖4,當點在的右側時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數量關系為:或.【點睛】本題主要考查了平行線的性質,平行公理和及推論等知識點,作輔助線后能求出各個角的度數,是解此題的關鍵.3.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據平行線的判定定理與性質定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側時,根據∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據平行線的判定定理與性質定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側時,根據∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數;②如圖2,過點E作EF∥AB,當點B在點A的右側時,∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數.【詳解】解:(1)過點E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數為65°;②如圖2,過點E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數為180°﹣.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是熟練掌握平行線的判定與性質.4.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內角互補,即可證得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據兩直線平行,內錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想的應用.5.(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據平行線的性質即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據∠解析:(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據平行線的性質即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據∠APC=∠APE+∠CPE=∠BAP+∠DCP進行計算即可;(2)過K作KE∥AB,根據KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進而得到∠AKC=∠APC;(3)過K作KE∥AB,根據KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是作出平行線構造內錯角相等計算.二、解答題6.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結論;(2)易得∠AON的度數,由兩條角平分線,可得∠DON,∠OCF的度數,也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結論;(2)易得∠AON的度數,由兩條角平分線,可得∠DON,∠OCF的度數,也易得∠COE的度數,由三角形外角的性質即可求得∠OEF的度數;(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當0゜<α<20゜時,∵CF平分∠OCQ∴∠OCF=∠QCF設∠OCF=∠QCF=x則∠OCQ=2x∵MN∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當α=20゜時,OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當20゜<α<90゜時,如圖∵CF平分∠OCQ∴∠OCF=∠QCF設∠OCF=∠QCF=x則∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數不變.【點睛】本題主要考查了角平分線的定義,平行線的判定與性質,角的和差關系,注意分類討論,引入適當的量便于運算簡便.7.(1)120o,120o;(2)160;(3)【分析】(1)過點作,,根據,平行線的性質和周角可求出,則,再根據,,可得,,可求出,,根據即可得到結果;(2)同理(1)的求法,解析:(1)120o,120o;(2)160;(3)【分析】(1)過點作,,根據,平行線的性質和周角可求出,則,再根據,,可得,,可求出,,根據即可得到結果;(2)同理(1)的求法,根據,,求解即可;(3)同理(1)的求法,根據,,求解即可;【詳解】解:(1)如圖示,分別過點作,,∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.(2)如圖示,分別過點作,,∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.故答案為:160;(3)同理(1)的求法∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.故答案為:.【點睛】本題主要考查了平行線的性質和角度的運算,熟悉相關性質是解題的關鍵.8.(1)證明見解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見解析.【分析】(1)首先根據平行線的性質得出∠ACE=∠A,∠ECD=∠B,然后通過等量代換即可得出答案;(2)首先根據角解析:(1)證明見解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見解析.【分析】(1)首先根據平行線的性質得出∠ACE=∠A,∠ECD=∠B,然后通過等量代換即可得出答案;(2)首先根據角平分線的定義得出∠FCD=∠ECD,∠HAF=∠HAD,進而得出∠F=(∠HAD+∠ECD),然后根據平行線的性質得出∠HAD+∠ECD的度數,進而可得出答案;(3)根據平行線的性質及角平分線的定義得出,,,再通過等量代換即可得出∠MQN=∠ACB.【詳解】解:(1)∵CEAB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,FA平分∠HAD,∴∠FCD=∠ECD,∠HAF=∠HAD,∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD),∵CHAB,∴∠ECD=∠B,∵AHBC,∴∠B+∠HAB=180°,∵∠BAD=70°,,∴∠F=(∠B+∠HAD)=55°;(3)∠MQN=∠ACB,理由如下:平分,.平分,.,.∴∠MQN=∠MQG﹣∠NQG=180°﹣∠QGR﹣∠NQG=180°﹣(∠AQG+∠QGD)=180°﹣(180°﹣∠CQG+180°﹣∠QGC)=(∠CQG+∠QGC)=∠ACB.【點睛】本題主要考查平行線的性質和角平分線的定義,掌握平行線的性質和角平分線的定義是解題的關鍵.9.(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結合已知條件可得:從而可得答案;②當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結合已知條件可得:從而可得答案;②當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差求解旋轉角,可得旋轉時間;當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時的旋轉時間與相同;(2)分兩種情況討論:當在上方時,當在下方時,①分別用含的代數式表示,從而可得的值;②分別用含的代數式表示,得到是一個含的代數式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當BD∥PC時,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉速為10°/秒,∴旋轉時間為3秒;如圖1﹣2,當PC∥BD時,∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點P逆時針旋轉的角度為180°+30°=210°,∵轉速為10°/秒,∴旋轉時間為21秒,如圖1﹣3,當PA∥BD時,即點D與點C重合,此時∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點P逆時針旋轉的角度為90°,∵轉速為10°/秒,∴旋轉時間為9秒,如圖1﹣4,當PA∥BD時,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點P逆時針旋轉的角度為90°+180°=270°,∵轉速為10°/秒,∴旋轉時間為27秒,如圖1﹣5,當AC∥DP時,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點P逆時針旋轉的角度為60°,∵轉速為10°/秒,∴旋轉時間為6秒,如圖1﹣6,當時,∴三角板PAC繞點P逆時針旋轉的角度為∵轉速為10°/秒,∴旋轉時間為秒,如圖1﹣7,當AC∥BD時,∵AC∥BD,∴∠DBP=∠BAC=90°,∴點A在MN上,∴三角板PAC繞點P逆時針旋轉的角度為180°,∵轉速為10°/秒,∴旋轉時間為18秒,當時,如圖1-3,1-4,旋轉時間分別為:,綜上所述:當t為或或或或或或時,這兩個三角形是“孿生三角形”;(2)如圖,當在上方時,①正確,理由如下:設運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結論錯誤.當在下方時,如圖,①正確,理由如下:設運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結論錯誤.綜上:①正確,②錯誤.【點睛】本題考查的是角的和差倍分關系,平行線的性質與判定,角的動態定義(旋轉角)的理解,掌握分類討論的思想是解題的關鍵.10.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進而得出結論;(3)過點C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過點作,圖2,,,,,,;(3),圖3理由如下:如圖3,過點作,平分,,,又,,,,,又,,.【點睛】本題是三角形綜合題目,考查了平移的性質、直角三角形的性質、平行線的判定與性質、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質和平行線的性質是解題的關鍵.三、解答題11.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據點P是動點,分三種情況討論:①當點P在AB與CD之間時;②當點P在AB上方時;③當點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關系即可.【詳解】(1)當點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據點P是動點,分三種情況討論:①當點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質,外角的性質,掌握平行線的性質是解題的關鍵,注意分情況討論問題.12.(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內角和定理求得∠AFD的度數即可;已知AG平分∠BAC,DF平分∠EDB,根據角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據平行線的性質可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據平行線的性質可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據角平分線的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據平行線的性質可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線ED交AG于點M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點睛】本題考查了角平分線的定義、平行線的性質、三角形的內角和定理及三角形外角的性質,根據角平分線的定義、平行線的性質、三角形的內角和定理及三角形外角的性質確定各角之間的關系是解決問題的關鍵.13.【現象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現象解釋]根據平面鏡反射光線的規律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現象解釋]根據平面鏡反射光線的規律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據三角形內角和定理求得∠2+∠3=125°,根據平面鏡反射光線的規律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據三角形內角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【嘗試探究】如圖3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如圖4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【點睛】本題考查了平行線的判定,三角形外角的性質以及三角形內角和定理,熟練掌握三角形的性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 傳染病防控政策執行效果評價考核試卷
- 農藥生產危化品安全操作規程考核試卷
- 內陸養殖水域資源開發與漁業生態補償機制設計考核試卷
- 化學礦床勘探成本控制技術考核試卷
- 世界環境日活動總結集合14篇
- 神經內科業務學
- 會計人員年度的工作總結
- 沈陽建黨節活動方案
- 江灘大舞臺活動方案
- 漢陽促銷活動方案
- 護理事業十五五發展規劃(2026-2030)
- 人教版(2024)七年級下冊英語全冊教案(8個單元整體教學設計)
- 10kV小區供配電設計、采購、施工EPC投標技術方案技術標
- 中小學校長公開招聘理論考試(試卷)
- 07勞動力及資源配備計劃
- 精餾-化工分離工程課件
- 醫院健康體檢表完整
- 二年級上冊數學課件-2.1 乘法、除法一(乘法引入) ▏滬教版 (共16張PPT)
- 無人機駕駛員國家職業技能標準(2021年版)(word精排版)
- 中國教育學會會員申請表
- 新冀人版小學科學三年級下冊全冊教案(2022年春修訂)
評論
0/150
提交評論