廣東省陸豐市東海中學2023-2024學年高二上數學期末統考模擬試題含解析_第1頁
廣東省陸豐市東海中學2023-2024學年高二上數學期末統考模擬試題含解析_第2頁
廣東省陸豐市東海中學2023-2024學年高二上數學期末統考模擬試題含解析_第3頁
廣東省陸豐市東海中學2023-2024學年高二上數學期末統考模擬試題含解析_第4頁
廣東省陸豐市東海中學2023-2024學年高二上數學期末統考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省陸豐市東海中學2023-2024學年高二上數學期末統考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設雙曲線的實軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.2.公比為的等比數列,其前項和為,前項積為,滿足,.則下列結論正確的是()A.的最大值為B.C.最大值為D.3.在空間四邊形中,,,,且,則()A. B.C. D.4.若函數在上為單調增函數,則m的取值范圍()A. B.C. D.5.已知四棱錐,平面PAB,平面PAB,底面ABCD是梯形,,,,滿足上述條件的四棱錐的頂點P的軌跡是()A.橢圓 B.橢圓的一部分C.圓 D.不完整的圓6.等比數列的前項和為,若,則()A. B.8C.1或 D.或7.已知是和的等比中項,則圓錐曲線的離心率為()A. B.或2C. D.或8.已知函數及其導函數,若存在使得,則稱是的一個“巧值點”.下列選項中沒有“巧值點”的函數是()A. B.C. D.9.已知是等差數列的前項和,,,則的最小值為()A. B.C. D.10.在區間內隨機取一個數,則方程表示焦點在軸上的橢圓的概率是A. B.C. D.11.已知數列滿足,則()A.2 B.C.1 D.12.圓截直線所得弦的最短長度為()A.2 B.C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知,是雙曲線的兩個焦點,以線段為邊作正,若邊的中點在雙曲線上,則雙曲線的離心率____________.14.以下四個關于圓錐曲線的命題中:①設A、B為兩個定點,k為非零常數,若,則動點P的軌跡為雙曲線;②拋物線焦點坐標是;③過定圓C上一定點A作圓的動弦AB,O為坐標原點,若,則動點P的軌跡為橢圓;④曲線與曲線(且)有相同的焦點其中真命題的序號為______(寫出所有真命題的序號.)15.一條直線過點,且與拋物線交于,兩點.若,則弦中點到直線的距離等于__________16.某校學生在研究折紙實驗中發現,當對折后紙張達到一定的厚度時,便不能繼續對折了.在理想情況下,對折次數與紙的長邊和厚度有關系:.現有一張長邊為30cm,厚度為0.05cm的矩形紙,根據以上信息,當對折完4次時,的最小值為________;該矩形紙最多能對折________次.(參考數值:,)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數的等比數列前項和為,且,.(1)求數列的通項公式;(2)若,求18.(12分)已知拋物線上一點到拋物線焦點的距離為,點關于坐標原點對稱,過點作軸的垂線,為垂足,直線與拋物線交于兩點.(1)求拋物線的方程;(2)設直線與軸交點分別為,求的值;(3)若,求.19.(12分)設F為橢圓的右焦點,過點的直線與橢圓C交于兩點.(1)若點B為橢圓C的上頂點,求直線的方程;(2)設直線的斜率分別為,,求證:為定值.20.(12分)已知為坐標原點,橢圓:的左、右焦點分別為,,右頂點為,上頂點為,若,,成等比數列,橢圓上的點到焦點的距離的最大值為求橢圓的標準方程;過該橢圓的右焦點作兩條互相垂直的弦與,求的取值范圍21.(12分)已知函數.(1)求函數f(x)的最小正周期;(2)當時,求函數f(x)的值域.22.(10分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和(Ⅰ)求k的值及f(x)的表達式(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因為,所以,所以的漸近線方程為.故選:C.2、A【解析】根據已知條件,判斷出,即可判斷選項D,再根據等比數列的性質,判斷,,由此判斷出選項A,B,C.【詳解】根據題意,等比數列滿足條件,,,若,則,則,,則,這與已知條件矛盾,所以不符合題意,故選項D錯誤;因為,,,所以,,,則,,數列前2021項都大于1,從第2022項開始都小于1,因此是數列中的最大值,故選項A正確由等比數列的性質,,故選項B不正確;而,由以上分析可知其無最大值,故C錯誤;故選:A3、A【解析】利用空間向量的線性運算即可求解.【詳解】..故選:A.4、B【解析】用函數單調性確定參數,使用參數分離法即可.【詳解】,在上是增函數,即恒成立,;設,;∴時,是增函數;時,是減函數;故時,,∴;故選:B.5、D【解析】根據題意,分析得動點滿足的條件,結合圓以及橢圓的方程,以及點的限制條件,即可判斷軌跡.【詳解】因為平面PAB,平面PAB,則//,又面面,故可得;因為,故可得,則,綜上所述:動點在垂直的平面中,且滿足;為方便研究,不妨建立平面直角坐標系進行說明,在平面中,因為,以中點為坐標原點,以為軸,過且垂直于的直線為軸建立平面直角坐標系,如下所示:因為,故可得,整理得:,故動點的軌跡是一個圓;又當三點共線時,幾何體不是空間幾何體,故動點的軌跡是一個不完整的圓.故選:.【點睛】本題考察立體幾何中動點的軌跡問題,處理的關鍵是利用立體幾何知識,找到動點滿足的條件,進而求解軌跡.6、C【解析】根據等比數列的前項和公式及等比數列通項公式即可求解.【詳解】設等比數列的公比為,則因為,所以,即,解得或,所以或.故選:C.7、B【解析】由等比中項的性質可得,分別計算曲線的離心率.【詳解】由是和的等比中項,可得,當時,曲線方程為,該曲線為焦點在軸上的橢圓,離心率,當時,曲線方程為,該曲線為焦點在軸上的雙曲線,離心率,故選:B.8、C【解析】利用新定義:存在使得,則稱是的一個“巧點”,對四個選項中的函數進行一一的判斷即可【詳解】對于A,,則,令,解得或,即有解,故選項A的函數有“巧值點”,不符合題意;對于B,,則,令,令,則g(x)在x>0時為增函數,∵(1),(e),由零點的存在性定理可得,在上存在唯一零點,即方程有解,故選項B的函數有“巧值點”,不符合題意;對于C,,則,令,故方程無解,故選項C的函數沒有“巧值點”,符合題意;對于D,,則,令,則.∴方程有解,故選項D的函數有“巧值點”,不符合題意故選:C9、C【解析】根據,可得,再根據,得,從而可得出答案.【詳解】解:因為,所以,又,所以,所以的最小值為.故選:C.10、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.11、D【解析】首先得到數列的周期,再計算的值.【詳解】由條件,可知,兩式相加可得,即,所以數列是以周期為的周期數列,.故選:D12、A【解析】由題知直線過定點,且在圓內,進而求解最值即可.【詳解】解:將直線化為,所以聯立方程得所以直線過定點將化為標準方程得,即圓心為,半徑為,由于,所以點在圓內,所以點與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據線段為邊作正,得到M在y軸上,求得M的坐標,再由,得到邊的中點坐標,代入雙曲線方程求解.【詳解】以線段為邊作正,則M在y軸上,設,則,因為,所以邊的中點坐標為,因為邊的中點在雙曲線上,所以,因為,所以,即,解得,因為,所以,故答案為:14、②④##④②【解析】利用雙曲線定義判斷命題①;寫出拋物線焦點判斷命題②;分析點P滿足的關系判斷命題③;按取值討論計算半焦距判斷命題④作答.【詳解】對于①,因雙曲線定義中要求,則命題①不正確;對于②,拋物線化為:,其焦點坐標是,命題②正確;對于③,令定圓C的圓心為C,因,則點P是弦AB的中點,當P與C不重合時,有,點P在以線段AC為直徑的圓上,當P與C重合時,點P也在以線段AC為直徑的圓上,因此,動點P的軌跡是以線段AC為直徑的圓(除A點外),則命題③不正確;對于④,曲線的焦點為,當時,橢圓中半焦距c滿足:,其焦點為,當時,雙曲線中半焦距滿足:,其焦點為,因此曲線與曲線(且)有相同的焦點,命題④正確,所以真命題的序號為②④.故答案為:②④【點睛】易錯點睛:橢圓長短半軸長分別為a,b,半焦距為c滿足關系式:;雙曲線的實半軸長、虛半軸長、半焦距分別為、、滿足關系式:,在同一問題中出現認真區分,不要混淆.15、【解析】求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離【詳解】解:如圖,拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于故答案為:16、①.64②.6【解析】利用即可求解,利用和換底公式進行求解.【詳解】令,則,則,即,即當對折完4次時,最小值為;由題意,得,,則,所以該矩形紙最多能對折6次.故答案為:64,6.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)9【解析】(1)根據題意列出關于等比數列首項、公比的方程組即可解決;(2)利用等比數列的前項和的公式,解方程即可解決.【小問1詳解】設各項均為正數的等比數列首項為,公比為則有,解之得則等比數列的通項公式.【小問2詳解】由,可得18、(1);(2);(3).【解析】(1)運用拋物線的定義進行求解即可;(2)設出直線的方程,與拋物線的方程聯立,可求得點和的縱坐標,結合直線點斜式方程、兩點間距離公式進行求解即可;(3)利用弦長公式求得,由兩點間距離公式求得和,再解方程即可.【小問1詳解】拋物線的準線方程為:,因為點到拋物線焦點的距離為,所以有;小問2詳解】由題意知,,,設,則,,,,所以直線的方程為,聯立,消去得,,解得,設,,,,不妨取,,直線的斜率為,其方程為,令,則,同理可得,所以,而,所以;【小問3詳解】,其中,,,因為,所以,化簡得,解得(舍負),即,所以【點睛】關鍵點睛:運用拋物線的定義、弦長公式進行求解是解題的關鍵.19、(1);(2)證明見解析.【解析】(1)求出的直線方程,結合橢圓方程可求的坐標,從而可求的直線方程;(2)設,直線(或),則可用兩點的坐標表示或,聯立直線的方程和橢圓的方程,消元后利用韋達定理可化簡前者從而得到要證明的結論【詳解】(1)若B為橢圓的上頂點,則.又過點,故直線由可得,解得即點,又,故直線;(2)設,方法一:設直線,代入橢圓方程可得:所以,故,又均不為0,故,即為定值方法二:設直線,代入橢圓方程可得:所以所以,即,所以,即為定值方法三:設直線,代入橢圓方程可得:所以,所以所以,把代入得方法四:設直線,代入橢圓的方程可得,則所以.因為,代入得.【點睛】思路點睛:直線與圓錐曲線的位置關系中的定點、定值、最值問題,一般可通過聯立方程組并消元得到關于或的一元二次方程,再把要求解的目標代數式化為關于兩個的交點橫坐標或縱坐標的關系式,該關系中含有或,最后利用韋達定理把關系式轉化為若干變量的方程(或函數),從而可求定點、定值、最值問題.20、(1)(2)【解析】根據,,成等比數列,橢圓上的點到焦點的距離的最大值為.列出關于、、的方程組,求出、的值,即可得出橢圓的方程;對直線和分兩種情況討論:一種是兩條直線與坐標軸垂直,可求出兩條弦長度之和;二是當兩條直線斜率都存在時,設直線的方程為,將直線方程與橢圓方程聯立,列出韋達定理,利用弦長公式可計算出的長度的表達式,然后利用相應的代換可求出的長度表達式,將兩線段長度表達式相加,利用函數思想可求出兩條弦長的取值范圍最后將兩種情況的取值范圍進行合并即可得出答案【詳解】易知,得,則,而,又,得,,因此,橢圓C的標準方程為;當兩條直線中有一條斜率為0時,另一條直線的斜率不存在,由題意易得;當兩條直線斜率都存在且不為0時,由知,設、,直線MN的方程為,則直線PQ的方程為,將直線方程代入橢圓方程并整理得:,顯然,,,,同理得,所以,,令,則,,設,,所以,,所以,,則綜合可知,的取值范圍是【點睛】本題主要考查待定系數法求橢圓方程及圓錐曲線求范圍,屬于難題.解決圓錐曲線中的范圍問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結論來解決,非常巧妙;二是將圓錐曲線中范圍問題轉化為函數問題,然后根據函數的特征選用參數法、配方法、判別式法、三角函數有界法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論