甘肅省天水市一中2023-2024學年數學高二上期末聯考試題含解析_第1頁
甘肅省天水市一中2023-2024學年數學高二上期末聯考試題含解析_第2頁
甘肅省天水市一中2023-2024學年數學高二上期末聯考試題含解析_第3頁
甘肅省天水市一中2023-2024學年數學高二上期末聯考試題含解析_第4頁
甘肅省天水市一中2023-2024學年數學高二上期末聯考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省天水市一中2023-2024學年數學高二上期末聯考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則的最小值為()A.1 B.2C.3 D.42.已知圓柱的底面半徑是1,高是2,那么該圓柱的側面積是()A.2 B.C. D.3.已知雙曲線的左、右焦點分別為,,點在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.4.若雙曲線經過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.105.設是雙曲線的兩個焦點,為坐標原點,點在上且,則的面積為()A. B.3C. D.26.某家庭準備晚上在餐館吃飯,他們查看了兩個網站關于四家餐館的好評率,如下表所示,考慮每家餐館的總好評率,他們應選擇()網站①評價人數網站①好評率網站②評價人數網站②好評率餐館甲100095%100085%餐館乙1000100%200080%餐館丙100090%100090%餐館丁200095%100085%A.餐館甲 B.餐館乙C.餐館丙 D.餐館丁7.拋物線的焦點到準線的距離為()A. B.C. D.18.在平面上給定相異兩點,設點在同一平面上且滿足,當且時,點的軌跡是一個圓,這個軌跡最先由古希臘數學家阿波羅尼斯發現,故我們稱這個圓為阿波羅尼斯圓.現有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.9.執行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.910.在直三棱柱中,底面是等腰直角三角形,,點在棱上,且,則與平面所成角的正弦值為()A. B.C. D.11.上海世博會期間,某日13時至21時累計入園人數的折線圖如圖所示,那么在13時~14時,14時~15時,…,20時~21時八個時段中,入園人數最多的時段是()A.13時~14時 B.16時~17時C.18時~19時 D.19時~20時12.如圖,在正方體中,點E是上底面的中心,則異面直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若=,則x的值為_______14.如圖,棱長為1的正方體,點沿正方形按的方向作勻速運動,點沿正方形按的方向以同樣的速度作勻速運動,且點分別從點A與點同時出發,則的中點的軌跡所圍成圖形的面積大小是________.15.曲線在處的切線方程是________.16.如果方程表示焦點在軸上的橢圓,那么實數的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知一張紙上畫有半徑為4圓O,在圓O內有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標準方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.18.(12分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.19.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值20.(12分)已知函數f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.21.(12分)已知數列為等差數列,為其前n項和,若,(1)求數列的首項和公差;(2)求的最小值.22.(10分)“既要金山銀山,又要綠水青山”.濱江風景區在一個直徑為100米的半圓形花園中設計一條觀光線路(如圖所示).在點與圓弧上的一點(不同于A,B兩點)之間設計為直線段小路,在直線段小路的兩側(注意是兩側)種植綠化帶;再從點到點設計為沿弧的弧形小路,在弧形小路的內側(注意是一側)種植綠化帶(注:小路及綠化帶的寬度忽略不計).(1)設(弧度),將綠化帶總長度表示為的函數;(2)試確定的值,使得綠化帶總長度最大.(弧度公式:,其中為弧所對的圓心角)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由基本不等式求解即可.【詳解】,當且僅當時,取等號.即所求最小值.故選:D2、D【解析】由圓柱的側面積公式直接可得.【詳解】故選:D3、C【解析】根據雙曲線的定義求得,利用可得離心率范圍【詳解】因為,又,所以,,又,即,,所以離心率故選:C4、A【解析】由已知設雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經過點,且它的兩條漸近線方程是,設雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A5、B【解析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯立即可得到,代入中計算即可.【詳解】由已知,不妨設,則,因為,所以點在以為直徑的圓上,即是以P為直角頂點的直角三角形,故,即,又,所以,解得,所以故選:B【點晴】本題考查雙曲線中焦點三角形面積的計算問題,涉及到雙曲線的定義,考查學生的數學運算能力,是一道中檔題.6、D【解析】根據給定條件求出各餐館總好評率,再比較大小作答.【詳解】餐館甲的總好評率為:,餐館乙的總好評率為:,餐館丙的好評率為:,餐館丁的好評率為:,顯然,所以餐館丁的總好評率最高.故選:D7、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關基本量,屬于基礎題.8、C【解析】先求動點的軌跡方程,再根據面積的最大值求得,根據的面積最小值求,由此可求雙曲線的離心率.【詳解】設,,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當位于圓的最高點時的面積最大,所以,解得;當位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.9、B【解析】分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是利用循環累乘值,并判斷滿足時輸出的值【詳解】解:模擬執行程序框圖,可得,時,不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環,輸出的值為27故選:10、C【解析】取AC的中點M,過點M作,且使得,進而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點M,因為,則,過點M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.11、B【解析】要找入園人數最多的,只要根據函數圖象找出圖象中變化最大的即可【詳解】結合函數的圖象可知,在13時~14時,14時~15時,…,20時~21時八個時段中,圖象變化最快的為16到17點之間故選:B.【點睛】本題考查折線統計圖的實際應用,屬于基礎題.12、B【解析】建立空間直角坐標系,利用向量夾角求解.【詳解】以為原點,為軸正方向建立空間直角坐標系如圖所示,設正方體棱長為2,所以,所以異面直線與所成角的余弦值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4或9.【解析】分析:先根據組合數性質得,解方程得結果詳解:因為=,所以因此點睛:組合數性質:14、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進行證明:菱形EFGC的周界即為動線段PQ的中點H的軌跡,首先證明:如果點H是動線段PQ的中點,那么點H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個定角的兩邊上,不失一般性,設P從B到C,而Q同時從到C,由于速度相同,所以PQ必平行于,故PQ的中點H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設P從A到B,同時Q從到,由于速度相同,則,由于H為PQ的中點,連接并延長,交底面ABCD于點T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點一定在菱形EFGC的周界上;下面證明:如果點H在菱形EFGC的周界上,則點H必定是符合條件的線段的中點.也分兩種情況進行證明:(1)H在CG或CE上,過點H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質可得:PH=QH,即H是PQ的中點,同時可證:BP=(或BQ=DP),因此P、Q符合題設條件(2)H在EF或FG上,不失一般性,設H在FG上,連接并延長,交平面AC于點T,顯然T在AC上,過T作TP∥CB于點P,則TP∥,在平面上,連接PH并延長,交于點Q,在三角形中,G是的中點,∥AC,則H是的中點,于是,從而有,又因為TP∥CB,,所以,從而,因此P,Q符合題設條件.由(1)(2),如果H是菱形EFGC周界上的任一點,則H必是符合題設條件的動線段PQ的中點,證畢.因為四邊形為菱形,其中,所以邊長為且,為等邊三角形,,所以面積.故答案為:【點睛】對于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學的立體幾何方面的知識,大膽猜測,小心驗證,對于多種情況的,要畫出相應的圖形,注意分類討論.15、【解析】求出函數的導函數,把代入即可得到切線的斜率,然后根據和斜率寫出切線的方程即可.【詳解】解:由函數知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點睛】本題考查導數的幾何意義,屬于基礎題16、【解析】化簡橢圓的方程為標準形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數的取值范圍是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)﹒【解析】(1)根據題意,作出圖像,可得,由此可知M的軌跡C為以O、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯立,用韋達定理表示的面積,根據變量范圍可求面積的最大值﹒【小問1詳解】以OA中點G坐標原點,OA所在直線為x軸建立平面直角坐標系,如圖:∴可知,,設折痕與和分別交于M,N兩點,則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O,A為焦點,4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設,,則的周長為當軸時,l的方程為,,,當l與x軸不垂直時,設,由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是18、(1);(2).【解析】(1)根據拋物線的定義列方程,由此求得,進而求得拋物線方程.(2)聯立直線的方程和拋物線方程,寫出根與系數關系,結合求得的值,求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意.(2)與聯立得,,得,又,又m>0,m=4.且,,當k=0時,S最小,最小值為.19、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立空間直角坐標系.求出平面的一個法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因為四邊形是等腰梯形,,所以,所以,即因為平面,所以,又因為,所以平面,因為平面,所以平面平面【小問2詳解】以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立如圖所示的空間直角坐標系設,則,所以,,,由(1)可知平面的一個法向量為設平面的法向量為,因為,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.20、(1)(2)【解析】(1)由于在點處有極小值,所以,從而可求出、的值;(2)由(1)可得,得在區間上單調遞減,在區間上單調遞增,從而可求出其值域.【小問1詳解】因為函數在處有極大值,所以,①且②聯立①②得:;【小問2詳解】由(1)得,所以,由得;由得,所以,函數區間上單調遞減,在區間上單調遞增;又,所以在上的值域為.21、(1)首項為-2,公差為1;(2).【解析】(1)設出等差數列的公差,再結合前n項和公式列式計算作答.(2)由(1)的結論,探求數列的性質即可推理計算作答.【小問1詳解】設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論