




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省蘭州市西北師大附中2023-2024學年數學高二上期末質量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或2.連續拋擲一枚硬幣3次,觀察正面出現的情況,事件“至少2次出現正面”的對立事件是()A.只有2次出現反面 B.至多2次出現正面C.有2次或3次出現正面 D.有2次或3次出現反面3.已知是定義在上的奇函數,對任意兩個不相等的正數、都有,記,,,則()A. B.C. D.4.已知命題,,則()A., B.,C., D.,5.已知向量,,且,則值是()A. B.C. D.6.阿基米德(公元前287年~公元前212年)不僅是著名物理學家,也是著名的數學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A B.C. D.7.已知命題若直線與拋物線有且僅有一個公共點,則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.8.已知四面體,所有棱長均為2,點E,F分別為棱AB,CD的中點,則()A.1 B.2C.-1 D.-29.曲線在處的切線如圖所示,則()A. B.C. D.10.已知函數,則()A.0 B.1C.2 D.11.執行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.12.甲、乙、丙、丁四人站成一列,要求甲站在最前面,則不同的排法有()A.24種 B.6種C.4種 D.12種二、填空題:本題共4小題,每小題5分,共20分。13.已知直線過點,,且是直線的一個方向向量,則__________.14.某n重伯努利試驗中,事件A發生的概率為p,事件A發生的次數記為X,,,則______15.圓的圓心坐標為___________;半徑為___________.16.已知雙曲線中心在坐標原點,左右焦點分別為,漸近線分別為,過點且與垂直的直線分別交于兩點,且,則雙曲線的離心率為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某校為了了解在校學生的支出情況,組織學生調查了該校2014年至2020年學生的人均月支出y(單位:百元)的數據如下表:年份2014201520162017201820192020年份代號t1234567人均月支出y3.94.34.65.45.86.26.9(1)求2014年至2020年中連續的兩年里,兩年人均月支出都超過4百元的概率;(2)求y關于t的線性回歸方程;(3)利用(2)中的回歸方程,預測該校2022年的人均月支出.附:最小二乘估計公式:,18.(12分)已知數列和滿足,(1)若,求的通項公式;(2)若,,證明為等差數列,并求和的通項公式19.(12分)已知點,橢圓:的離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點.設過點的動直線與相交于,兩點(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由20.(12分)如圖是一拋物線型機械模具的示意圖,該模具是拋物線的一部分且以拋物線的軸為對稱軸,已知頂點深度4cm,口徑長為12cm(1)以頂點為坐標原點建立平面直角坐標系(如圖),求該拋物線的標準方程;(2)為滿足生產的要求,需將磨具的頂點深度減少1cm,求此時該磨具的口徑長21.(12分)圓經過兩點,且圓心在直線上.(1)求圓的方程;(2)求圓與圓的公共弦的長.22.(10分)已知函數.(I)當時,求曲線在處的切線方程;(Ⅱ)若當時,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據曲線方程的特征,發現曲線表示在軸上方的圖象,畫出圖形,根據圖形上直線的三個特殊位置,當已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應的的值;當已知直線位于直線及直線的位置時,分別求出對應的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當直線在直線位置時,直線與曲線剛好有兩個交點,此時,當直線在直線位置時,直線與曲線只有一個公共點,此時,則當時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D2、D【解析】根據對立事件的定義即可得出結果.【詳解】對立事件是指事件A和事件B必有一件發生,連續拋擲一枚均勻硬幣3次,“至少2次出現正面”即有2次或3次出現正面,對立事件為0次或1次出現正面,即“有2次或3次出現反面”故選:D3、A【解析】由題,可得是定義在上的偶函數,且在上單調遞減,在上單調遞增,根據函數的單調性,即可判斷出的大小關系.【詳解】設,由題,得,即,所以函數在上單調遞減,因為是定義在R上的奇函數,所以是定義在上的偶函數,因此,,,即.故選:A【點睛】本題主要考查利用函數的單調性判斷大小的問題,其中涉及到構造函數的運用.4、C【解析】利用全稱量詞命題的否定可得出結論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.5、A【解析】求出向量,的坐標,利用向量數量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.6、C【解析】由題意,設出橢圓的標準方程為,然后根據橢圓的離心率以及橢圓面積列出關于的方程組,求解方程組即可得答案【詳解】由題意,設橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.7、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時直線與拋物線相交,可判斷命題為假;當時,,命題為真,根據復合命題的真假關系,即可得出結論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個交點,直線與拋物不相切,可得命題是假命題,當時,,方程表示橢圓命題是真命題,則是真命題.故選:B.【點睛】本題考查復合命題真假的判斷,屬于基礎題.8、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數量積計算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點E,F分別為棱AB,CD的中點,則,,,所以.故選:D9、C【解析】由圖可知切線斜率為,∴.故選:C.10、C【解析】對函數f(x)求導即可求得結果.【詳解】函數,則,,故選C【點睛】本題考查正弦函數的導數的應用,屬于簡單題.11、C【解析】由題意確定流程圖的功能,然后計算其輸出值即可.【詳解】運行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項求和可得:.故選:C.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結構、條件結構和循環結構(2)要識別、運行程序框圖,理解框圖所解決的實際問題(3)按照題目的要求完成解答并驗證12、B【解析】由已知可得只需對剩下3人全排即可【詳解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,則只需對剩下3人全排即可,則不同的排法共有,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題得,解方程組即得解.【詳解】解:由題得,因為是直線的一個方向向量,所以,所以,所以.故答案為:14、##0.2【解析】根據二項分布的均值和方差的計算公式可求解【詳解】依題意得X服從二項分布,則,解得,故答案為:15、①.②.【解析】配方后可得圓心坐標和半徑【詳解】將圓的一般方程化為圓標準方程是,圓心坐標為,半徑為故答案為:;16、【解析】判斷出三角形的形狀,求得點坐標,由此列方程求得,進而求得雙曲線的離心率.【詳解】依題意設雙曲線方程為,雙曲線的漸近線方程為,右焦點,不妨設.由于,所以是線段的中點,由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡得,所以雙曲線的離心率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)7.8百元.【解析】(1)應用列舉法,結合古典概型計算公式進行進行求解即可;(2)根據題中所給的公式進行計算求解即可;(3)根據(2)的結論,利用代入法進行求解即可.【小問1詳解】2014年至2020年中連續的兩年有、、、、、共6種組合,其中只有不滿足連續兩年人均月支出都超過4百元,所以連續兩年人均月支出都超過4百元的概率為;【小問2詳解】由已知數據分別求出公式中的量.,,,,所求回歸方程為;小問3詳解】由(2)知,,將2022年的年份代號代入(2)中的回歸方程,得,故預測該校2022年人均月支出為7.8百元.18、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構造等比數列求的通項公式;(2)先由已知得,先分別求出,的通項公式,然后合并可得的通項公式,進而可得的通項公式【小問1詳解】當,時,,所以,即,整理得,所以是以為首項,為公比的等比數列故,即【小問2詳解】當時,由,,得,所以因為,所以,則是以為首項,2為公差的等差數列,,;是以為首項,2為公差的等差數列,,綜上所述,所以,,故是以2為首項,1為公差的等差數列當時,,且滿足,所以19、(1);(2)存在;或.【解析】(1)設,由,,,求得的值即可得橢圓的方程;(2)設,,直線的方程為與橢圓方程聯立可得,,進而可得弦長,求出點到直線的距離,解方程,求得的值即可求解.【小問1詳解】設,因為直線的斜率為,,所以,可得,又因為,所以,所以,所以橢圓的方程為【小問2詳解】假設存在直線,使得的面積為,當軸時,不合題意,設,,直線的方程為,聯立消去得:,由可得或,,,所以,點到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.20、(1)(2)cm【解析】(1)設拋物線的標準方程為,由題意可得拋物線過點,將此點代入方程中可求出的值,從而可得拋物線方程,(2)設此時的口徑長為,則拋物線過點,代入拋物線方程可求出的值,從而可求得答案【小問1詳解】由題意,建立如圖所示的平面直角坐標系,設拋物線的標準方程為,因為頂點深度4,口徑長為12,所以該拋物線過點,所以,得,所以拋物線方程為;【小問2詳解】若將磨具的頂點深度減少,設此時的口徑長為,則可得,得,所以此時該磨具的口徑長21、(1)(2)【解析】(1)設圓的方程為,代入所過的點后可求,從而可求圓的方程.(2)利用兩圓的方程可求公共弦的方程,利用垂徑定理可求公共弦的弦長.【小問1詳解】設圓的方程為,,,所以圓的方程為;【小問2詳解】由圓的方程和圓的方程可得公共弦的方程為:,整理得到:,到公共弦距離為,故公共弦的弦長為:.22、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點斜式可求曲線在處的切線方程為(Ⅱ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光學高分子新材料生產線項目可行性研究報告(范文)
- 讀書筆記:小王子中的友情與成長15篇范文
- 建筑裝飾材料與施工技術試題庫
- 智能化監控系統在項目管理中的應用
- 網絡安全與防護知識梳理
- 食品營養學及食品安全管理題庫
- 我家的冰箱作文范文13篇
- 中醫藥適宜技術的國際化發展與文化傳播策略
- 復合型光伏電站配套儲能系統項目可行性研究報告
- 2025年心理測量與評估考試試題及答案
- 售電業務知識培訓
- 臺球助教培訓流程
- 商業空間中的植物布置與養護
- 公司煤礦兼職礦山救護隊制度及職責
- 《休克新進展》課件
- 旅游景區消防維保方案及管理
- 高端仿真花采購合同
- 室內裝修拆除施工方案
- 內科學 消化系統疾病 習題集 帶答案
- 研究生學術表達能力培養智慧樹知到答案2024年西安建筑科技大學、清華大學、同濟大學、山東大學、河北工程大學、《環境工程》英文版和《環境工程》編輯部
- 安踏組織架構分析文檔
評論
0/150
提交評論