




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省邢臺巿南和一中2024屆高二數學第一學期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓心,半徑為的圓的方程是()A. B.C. D.2.在區間上隨機取一個數,則事件“曲線表示圓”的概率為()A. B.C. D.3.已知橢圓,則下列結論正確的是()A.長軸長為2 B.焦距為C.短軸長為 D.離心率為4.在區間內隨機取一個數x,則使得的概率為()A. B.C. D.5.年底以來,我國多次在重要場合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負抵消,實現二氧化碳“零排放”.二氧化碳的分子是由一個碳原子和兩個氧原子構成的,其結構式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構成的不同二氧化碳分子共有()A.種 B.種C.種 D.種6.關于x的方程在內有解,則實數m的取值范圍()A. B.C. D.7.已知,,且,則()A. B.C. D.8.已知拋物線的焦點為,點在拋物線上,且,則的橫坐標為()A.1 B.C.2 D.39.若橢圓與直線交于兩點,過原點與線段AB中點的直線的斜率為,則A. B.C. D.210.已知空間、、、四點共面,且其中任意三點均不共線,設為空間中任意一點,若,則()A.2 B.C.1 D.11.已知雙曲線的左、右焦點分別為,,過點作直線交雙曲線的右支于A,B兩點.若,則雙曲線的離心率為()A. B.C. D.12.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足0,,則數列的通項公式為____,則數列的前項和______14.如圖將自然數,…按到箭頭所指方向排列,并依次在,…等處的位置拐彎.如圖作為第一次拐彎,則第33次拐彎的數是___________,超過2021的第一個拐彎數是____________15.已知向量、滿足,,且,則與的夾角為___________.16.已知函數在上單調遞減,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求下列函數的導數:(1);(2).18.(12分)已知等差數列前n項和為,,,若對任意的正整數n成立,求實數的取值范圍.19.(12分)已知兩個定點,,動點滿足,設動點的軌跡為曲線,直線:(1)求曲線的軌跡方程;(2)若與曲線交于不同的、兩點,且(為坐標原點),求直線的斜率;20.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值21.(12分)在公差為的等差數列中,已知,且成等比數列.(Ⅰ)求;(Ⅱ)若,求.22.(10分)已知等差數列的前n項和為,且.(1)求數列的通項公式及;(2)設,求數列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據圓心坐標及半徑,即可得到圓的方程.【詳解】因為圓心為,半徑為,所以圓的方程為:.故選:D.2、D【解析】先求出曲線表示圓參數的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D3、D【解析】根據已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長軸長為,焦距為,短軸長為,ABC選項錯誤.離心率為,D選項正確.故選:D4、A【解析】解一元一次不等式求不等式在上解集,再利用幾何概型的長度模型求概率即可.【詳解】由,可得,其中長度為1,而區間長度為4,所以,所求概率為故選:A.5、C【解析】分兩種情況討論:兩個氧原子相同、兩個氧原子不同,分別計算出兩種情況下二氧化碳分子的個數,利用分類加法計數原理可得結果.【詳解】分以下兩種情況討論:若兩個氧原子相同,此時二氧化碳分子共有種;若兩個氧原子不同,此時二氧化碳分子共有種.由分類加法計數原理可知,由上述同位素可構成的不同二氧化碳分子共有種.故選:C.6、A【解析】當時,顯然不成立,當時,分離變量,利用導數求得函數的單調性與最值,即可求解.【詳解】當時,可得顯然不成立;當時,由于方程可轉化為,令,可得,當時,,函數單調遞增;當時,,函數單調遞減,所以當時,函數取唯一的極大值,也是最大值,所以,所以,即,所以實數m的取值范圍.故選:A.7、D【解析】利用空間向量共線的坐標表示可求得、的值,即可得解.【詳解】因為,則,所以,,,因此,.故選:D8、C【解析】利用拋物線的定義轉化為到準線的距離,即可求得.【詳解】拋物線的焦點坐標為,準線方程為,,∴,故選:C.9、D【解析】細查題意,把代入橢圓方程,得,整理得出,設出點的坐標,由根與系數的關系可以推出線段的中點坐標,再由過原點與線段的中點的直線的斜率為,進而可推導出的值.【詳解】聯立橢圓方程與直線方程,可得,整理得,設,則,從而線段的中點的橫坐標為,縱坐標,因為過原點與線段中點的直線的斜率為,所以,所以,故選D.【點睛】該題是一道關于直線與橢圓的綜合性題目,涉及到的知識點有直線與橢圓相交時對應的解題策略,中點坐標公式,斜率坐標公式,屬于簡單題目.10、B【解析】根據空間四點共面的充要條件代入即可解決.【詳解】,即整理得由、、、四點共面,且其中任意三點均不共線,可得,解之得故選:B11、A【解析】根據給定條件結合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點睛】方法點睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據離心率的定義求解離心率;(2)齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.12、C【解析】利用橢圓和雙曲線的性質,用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當且僅當時取等號,的最小值為6,故選:C【點睛】本題考查了橢圓雙曲線的性質,用橢圓雙曲線的焦距長軸長表示是解題的關鍵,意在考查學生的計算能力二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】第一空:先構造等比數列求出,即可求出的通項公式;第二空:先求出,令,通過錯位相減求出的前項和為,再結合等差數列的求和公式及分組求和即可求解.【詳解】第一空:由可得,又,則是以1為首項,2為公比的等比數列,則,則;第二空:,設,前項和為,則,,兩式相減得,則,又,則.故答案為:;.14、①.②.【解析】根據題意得到拐彎處的數字與其序數的關系,歸納得到當為奇數為;當為為偶數為,分別代入,即可求解.【詳解】解:由題意,拐彎處的數字與其序數的關系,如下表:拐彎的序數012345678拐彎處的數1235710131721觀察拐彎處的數字的規律:第1個數;第3個數;第5個數;第7個數;,所以當為奇數為;同理可得:當為為偶數為;第33次拐彎的數是,當時,可得,當時,可得,所以超過2021第一個拐彎數是.故答案為:;.15、##【解析】根據向量數量積的計算公式即可計算.【詳解】,,.故答案為:﹒16、【解析】先求導,求出函數的單調遞減區間,由即可求解.【詳解】,令,得,即的單調遞減區間是,又在上單調遞減,可得,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據導數的加法運算法則,結合常見函數的導數進行求解即可;(2)根據導數的加法和乘法的運算法則,結合常見函數的導數進行求解即可.【小問1詳解】;【小問2詳解】.18、【解析】設等差數列的公差為,根據題意得,解方程得,,進而得,故恒成立,再結合二次函數的性質得當或4時,取得最小值,進而得答案.【詳解】解:設等差數列的公差為,由已知,.聯立方程組,解得,.所以,,由題意,即.令,其圖象為開口向上的拋物線,對稱軸為,所以當或4時,取得最小值,所以實數的取值范圍是.19、(1);(2)【解析】(1)設點的坐標為,由,結合兩點間的距離公式,列出式子,可求出軌跡方程;(2)易知,且,可求出到直線的距離,結合點到直線的距離為,可求出直線的斜率【詳解】(1)設點的坐標為,由,可得,整理得,所以所求曲線的軌跡方程為(2)依題意,,且,在△中,,取的中點,連結,則,所以,即點到直線:的距離為,解得,所以所求直線斜率為【點睛】本題考查軌跡方程,考查直線的斜率,考查兩點間的距離公式、點到直線的距離公式的應用,考查學生的計算求解能力,屬于基礎題.20、(1)證明見解析(2)【解析】(1)連接BD交AC于點E,連接ME,由所給條件推理出CA⊥AD,進而得CA⊥平面PAD,證得結論(2)首先以A為原點,射線AC,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,再利用向量法求解二面角即可【小問1詳解】(1)連接BD交AC于點E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問2詳解】(2)如圖所示:以A為原點,射線AC,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,則,∴,設平面PAB和平面MAC的一個法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.21、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由題意求得數列的公差后可得通項公式.(Ⅱ)結合條件可得,分和兩種情況去掉中的絕對值后,利用數列的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025公司項目部管理人員安全培訓考試試題(新)
- 2025企業安全培訓考試試題考題
- 2024-2025工廠職工安全培訓考試試題【能力提升】
- 2025合作伙伴關系確立合同書范本
- 2025電子產品贈送的合同范本
- 2025年大型無菌包裝機合作協議書
- 2025健康管理中心連鎖加盟合同書
- 2025標準辦公室租賃合同
- 2025年兼職翻譯服務合同范本
- 2025年兼職多職未簽訂合同男子失業又面臨法律訴訟管理資料糾紛
- 2025年審計審查重點試題及答案
- 2025年證券從業資格證考試真題試題及答案
- 城市管理文明執法規范(試行)
- 廣東省2024-2025學年佛山市普通高中教學質量檢測物理試卷及答案(二)高三試卷(佛山二模)
- 【9數一模】2025年安徽合肥市第四十五中學九年級中考一模數學試卷(含答案)
- 2025年中石油政工師理論考試題庫(含答案)
- 2025年二建-水利-簡答200問
- 安全專項施工方案內容
- 2025天津市安全員《B證》考試題庫及答案
- 幼兒園趣味迷宮課件
- 電網工程設備材料信息參考價(2024年第四季度)
評論
0/150
提交評論