




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省邯鄲市臨漳第一中學2023年高二數學第一學期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義“等方差數列”:如果一個數列從第二項起,每一項的平方與它的前一項的平方的差都等于同一個常數,那么這個數列就叫作等方差數列,這個常數叫作該數列的方公差.設是由正數組成的等方差數列,且方公差為4,,則數列的前24項和為()A. B.3C. D.62.已知向量與平行,則()A. B.C. D.3.已知是定義在上的函數,其導函數為,且,且,則不等式的解集為()A. B.C. D.4.已知平面的一個法向量為,則x軸與平面所成角的大小為()A. B.C. D.5.在平行六面體中,,,,則()A. B.5C. D.36.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.7.在三棱錐中,平面;記直線與直線所成的角為,直線與平面所成的角為,二面角的平面角為,則()A. B.C. D.8.在四面體中,空間的一點滿足,若共面,則()A. B.C. D.9.在等差數列中,,,則()A. B.C. D.10.世界上最早在理論上計算出“十二平均律”的是我國明代杰出的律學家朱載堉,他當時稱這種律制為“新法密率”十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它前一個單音的頻率的比都相等,且最后一個單音是第一個單音頻率的2倍.已知第十個單音的頻率,則與第四個單音的頻率最接近的是()A.880 B.622C.311 D.22011.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.七巧板是一種古老的中國傳統智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學用七巧板拼成了一個“鴿子”形狀,若從“鴿子”身上任取一點,則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某古典概型的樣本空間,事件,則___________.14.正四棱錐底面邊長和高均為分別是其所在棱的中點,則棱臺的體積為___________.15.設空間向量,且,則___________.16.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為增強市民的環境保護意識,某市面向全市征召若干名宣傳志愿者,成立環境保護宣傳小組,現把該小組的成員按年齡分成、、、、這組,得到的頻率分布直方圖如圖所示,已知年齡在內的人數為.(1)若用分層抽樣的方法從年齡在、、內的志愿者中抽取名參加某社區的宣傳活動,再從這名志愿者中隨機抽取名志愿者做環境保護知識宣講,求這名環境保護知識宣講志愿者中至少有名年齡在內的概率;(2)在(1)的條件下,記抽取的名志愿者分別為甲、乙,該社區為了感謝甲、乙作為環境保護知識宣講的志愿者,給甲、乙各隨機派發價值元、元、元的紀念品一件,求甲的紀念品不比乙的紀念品價值高的概率.18.(12分)已知拋物線:上的點到焦點的距離為(1)求拋物線的方程;(2)設縱截距為的直線與拋物線交于,兩個不同的點,若,求直線的方程19.(12分)已知的展開式中二項式系數和為16(1)求展開式中二項式系數最大的項;(2)設展開式中的常數項為p,展開式中所有項系數的和為q,求20.(12分)已知橢圓的離心率,過橢圓C的焦點且垂直于x軸的直線截橢圓所得到的線段的長度為1(1)求橢圓C的方程;(2)直線交橢圓C于A、B兩點,若y軸上存在點P,使得是以AB為斜邊的等腰直角三角形,求的面積的取值范圍21.(12分)已知數列的前n項和為,且(1)證明數列是等比數列,并求出數列的通項公式;(2)在與之間插入n個數,使得包括與在內的這個數成等差數列,其公差為,求數列的前n項和22.(10分)如圖,在多面體ABCDEF中,四邊形ABCD是菱形,∠ABC=60°,FA⊥平面ABCD,ED//FA,且AB=FA=2ED=2(1)求證:平面FAC⊥平面EFC;(2)求多面體ABCDEF的體積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據等方差數列的定義,結合等差數列的通項公式,運用裂項相消法進行求解即可.【詳解】因為是方公差為4的等方差數列,所以,,∴,∴,∴,故選:C2、D【解析】根據兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.3、B【解析】令,再結合,和已知條件將問題轉化為,最后結合單調性求解即可.【詳解】解:令,則,因為,所以,即函數為上的增函數,因為,不等式可化為,所以,故不等式的解集為故選:B4、C【解析】依題意可得軸的方向向量可以為,再利用空間向量法求出線面角的正弦值,即可得解;【詳解】解:依題意軸的方向向量可以為,設x軸與平面所成角為,則,因為,所以,故選:C5、B【解析】由,則結合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.6、A【解析】由題意首先畫出可行域,然后結合目標函數的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區域如圖所示,結合目標函數的幾何意義可知目標函數在點A處取得最大值,聯立直線方程:,可得點A的坐標為:,據此可知目標函數的最大值為:.故選:A【點睛】方法點睛:求線性目標函數的最值,當時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最?。划敃r,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.7、A【解析】先得到三棱錐的每一個面都是直角三角形,然后可得與平面所成的角,二面角的平面角,在直角三角形中算出他們的余弦值,利用向量法計算直線與直線所成的角為的余弦值,然后比較大小.【詳解】令,由平面,且平面,又,,面三棱錐的每一個面都是直角三角形.與平面所成的角,二面角的平面角,由已知可得,,,又,則所以,又均為銳角,故選:A.8、D【解析】根據四點共面的向量表示,可得結果.【詳解】由共面知,故選:【點睛】本題主要考查空間中四點共面的向量表示,屬基礎題.9、B【解析】利用等差中項的性質可求得的值,進而可求得的值.【詳解】由等差中項的性質可得,則.故選:B.10、C【解析】依題意,每一個單音的頻率構成一個等比數列,由,算出公比,結合,即可求出.【詳解】設第一個單音的頻率為,則最后一個單音的頻率為,由題意知,且每一個單音的頻率構成一個等比數列,設公比為,則,解得:又,則與第四個單音的頻率最接近的是311,故選:C【點睛】關鍵點點睛:本題考查等比數列通項公式的運算,解題的關鍵是分析題意將其轉化為等比數列的知識,考查學生的計算能力,屬于基礎題.11、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計算說明“若q則p”的真假即可判斷作答.【詳解】因為,由得:,則,當且僅當,即時取等號,因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A12、C【解析】設正方形邊長為1,求出七巧板中“4”這一塊的面積,然后計算概率【詳解】設正方形邊長為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長為,面積為,所以概率為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據定義直接計算得到答案.【詳解】.故答案為:.14、【解析】分別計算,,作差得到答案.【詳解】分別是其所在棱的中點,則正四棱錐底面邊長和高均為,,,故.故答案為:.15、1【解析】根據,由求解.【詳解】因為向量,且,所以,即,解得.故答案為:116、##0.5【解析】根據條件概率求概率的方法即可求得答案.【詳解】設A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因為甲乙兩地下雨相互獨立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)將名志愿者進行編號,列舉出所有的基本事件,并確定所求事件所包含的基本事件數,利用古典概型的概率公式可求得所求事件的概率;(2)列舉出甲、乙獲得紀念品價值的所有情況,并確定所求事件所包含的情況,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:因為志愿者年齡在、、內的頻率分別為、、,所以用分層抽樣的方法抽取的名志愿者年齡在、、內的人數分別為、、.記年齡在內的名志愿者分別記為、、,年齡在的名志愿者分別記為、,年齡在內的名志愿者記為,則從中抽取名志愿者的情況有、、、、、、、、、、、、、、,共種可能;而至少有名志愿者的年齡在內的情況有、、、、、、、、,共種可能.所以至少有名志愿者的年齡在內的概率為.【小問2詳解】解:甲、乙獲得紀念品價值的情況有、、、、、、、、,共種可能;而甲的紀念品不比乙的紀念品價值高的情況有、、、、、,共種可能.故甲的紀念品不比乙的紀念品價值高的概率為.18、(1);(2)【解析】(1)利用拋物線的性質即可求解.(2)設直線方程,與拋物線聯立,利用韋達定理,即可求解.【詳解】(1)由題設知,拋物線的準線方程為,由點到焦點的距離為,得,解得,所以拋物線的標準方程為(2)設,,顯然直線的斜率存在,故設直線的方程為,聯立消去得,由得,即所以,又因為,,所以,所以,即,解得,滿足,所以直線的方程為19、(1)(2)【解析】(1)由二項式系數和的性質得出,再由性質求出展開式中二項式系數最大的項;(2)由通項得出,利用賦值法得出,再求解【小問1詳解】由題意可得,解得.,展開式中二項式系數最大的項為;【小問2詳解】,其展開式的通項為,令,得∴常數項令,可得展開式中所有項系數的和為,∴20、(1)(2)【解析】(1)由條件可得,解出即可;(2)設,,取AB的中點,聯立直線與橢圓的方程消元,算出,,然后可算出,然后由可得,然后表示出的面積可得答案.小問1詳解】令,得,所以,解得,,所以橢圓C的方程:【小問2詳解】設,,取AB的中點,因為為以AB為斜邊的等腰直角三角形,所以且,聯立得,則∴又∵,∴,且,,∴,由得,∴∴21、(1)證明見解析,(2)【解析】(1)根據公式得到,得到,再根據等比數列公式得到答案.(2)根據等差數列定義得到,再利用錯位相減法計算得到答案.【小問1詳解】,當時,,得到;當時,,兩式相減得到,整理得到,即,故,數列是首項為,公比為的等比數列,,即,驗證時滿足條件,故.【小問2詳解】,故,,,兩式相減得到:,整理得到:,故.22、(1)證明見解析;(2).【解析】(1)連接BD交AC于點O,設FC的中點為P,連接OP,EP,證明BD//EP,BD⊥平面FAC即可推理作答.(2)求出三棱錐和四棱錐的體積即可計算作答.【小問1詳解】連接BD交AC于點O,設FC的中點為P,連接OP,EP,如圖,菱形ABCD中,O為AC的中點,則OP//FA,且,而ED//FA,且FA=2ED,于是得OP//ED,且OP=ED,即有四邊形OPED為平行四邊形,則OD//EP,即BD//EP,因為FA⊥平面ABCD,BD平面A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 正式員工勞動合同
- 2025合同模板商業借貸合同有擔保范本
- 2025年塑料加工合作合同范本
- 2025保定房屋租賃標準合同范本
- 2025綠化苗木購銷合同簡化版
- 超聲波流量計工作原理、結構組成、維護與保養大全
- 商場垃圾分類管理制度
- 公司食堂用餐管理制度
- 醫院加班調休管理制度
- 宿舍打包日常管理制度
- (2025)紀檢監察業務知識考試題及含答案
- 網絡安全技術實操技能考核試題及答案
- 國家保安員模擬試題及答案(附解析)
- 2025屆廣東省佛山市南海中學七下數學期末學業水平測試試題含解析
- DB31/T 1402-2023養老機構認知障礙照護單元設置和服務要求
- 湖南省長沙市師大附中教育集團2025年數學七下期末綜合測試試題含解析
- (正式版)HGT 6313-2024 化工園區智慧化評價導則
- 《分析化學》期末考試試卷(A)及答案
- 燒烤店菜單模板
- 金屬材料力學性能檢測樣品制樣作業指導書
- 關于上海孕婦產假、產前假、哺乳假、保胎假規定匯總
評論
0/150
提交評論