




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省陽春一中2023年高二上數學期末達標檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.2.已知一組數據為:2,4,6,8,這4個數的方差為()A.4 B.5C.6 D.73.已知兩直線與,則與間的距離為()A. B.C. D.4.設a,b,c分別是內角A,B,C的對邊,若,,依次成公差不為0的等差數列,則()A.a,b,c依次成等差數列 B.,,依次成等差數列C.,,依次成等比數列 D.,,依次成等比數列5.在四面體中,,,,且,,則等于()A. B.C. D.6.中,內角A,B,C的對邊分別為a,b,c,若,則等于()A. B.C. D.7.的內角A,B,C的對邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形8.王昌齡是盛唐著名的邊塞詩人,被譽為“七絕圣手”,其《從軍行》傳誦至今“青海長云暗雪山,孤城遙望玉門關.黃沙百戰穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要9.某工廠對一批產品進行了抽樣檢測.右圖是根據抽樣檢測后的產品凈重(單位:克)數據繪制的頻率分布直方圖,其中產品凈重的范圍是[96,106],樣本數據分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產品凈重小于100克的個數是36,則樣本中凈重大于或等于98克并且小于104克的產品的個數是.A.90 B.75C.60 D.4510.設命題,則為A. B.C. D.11.已知正四面體的底面的中心為為的中點,則直線與所成角的余弦值為()A. B.C. D.12.如圖,在長方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若拋物線上的點P到該拋物線焦點的距離為5,則點P的縱坐標為_______14.已知數列滿足,若對任意恒成立,則實數的取值范圍為________15.曲線在處的切線與坐標軸圍成的三角形面積為___________.16.函數在處的切線方程是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了了解高二段1000名學生一周課外活動情況,隨機抽取了若干學生的一周課外活動時間,時間全部介于10分鐘與110分鐘之間,將課外活動時間按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右前3個組的頻率之比為3∶8∶19,且第二組的頻數為8(1)求第一組數據的頻率并計算調查中隨機抽取了多少名學生的一周課外活動時間;(2)求這組數據的平均數18.(12分)為了解某市家庭用電量的情況,該市統計局調查了若干戶居民去年一年的月均用電量(單位:),得到如圖所示的頻率分布直方圖.(1)估計月均用電量的眾數;(2)求a的值;(3)為了既滿足居民的基本用電需求,又提高能源的利用效率,市政府計劃采用階梯電價,月均用電量不高于平均數的為第一檔,高于平均數的為第二檔,已知某戶居民月均用電量為,請問該戶居民應該按那一檔電價收費,說明理由.19.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當點與點關于軸對稱時的面積是否達到最大?并說明理由.20.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設直線不經過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標21.(12分)已知函數(1)解不等式;(2)若不等式對恒成立,求實數m的取值范圍22.(10分)已知拋物線C:上一點到焦點F的距離為2(1)求實數p的值;(2)若直線l過C的焦點,與拋物線交于A,B兩點,且,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B2、B【解析】根據數據的平均數和方差的計算公式,準確計算,即可求解.【詳解】由平均數的計算公式,可得,所以這4個數的方差為故選:B.3、B【解析】把直線的方程化簡,再利用平行線間距離公式直接計算得解.【詳解】直線的方程化為:,顯然,,所以與間的距離為.故選:B4、B【解析】由等差數列的性質得,利用正弦定理、余弦定理推導出,從而,,依次成等差數列.【詳解】解:∵a,b,c分別是內角A,B,C的對邊,,,依次成公差不為0的等差數列,∴,根據正弦定理可得,∴,∴,∴,∴,,依次成等差數列.故選:B.【點睛】本題考查三個數成等差數列或等比數列的判斷,考查等差數列、等比數列的性質、正弦定理、余弦定理等基礎知識,考查運算求解能力,考查函數與方程思想,屬于中檔題.5、B【解析】根據空間向量的線性運算即可求解.【詳解】解:由題知,故選:B.6、A【解析】由題得,進而根據余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A7、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因為,所以,則,所以,所以是等腰三角形.故選:B.8、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,比如戰死沙場;即如果已知“還”,一定是已經“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B9、A【解析】樣本中產品凈重小于100克的頻率為(0.050+0.100)×2=0.3,頻數為36,∴樣本總數為.∵樣本中凈重大于或等于98克并且小于104克的產品的頻率為(0.100+0.150+0.125)×2=0.75,∴樣本中凈重大于或等于98克并且小于104克的產品的個數為120×0.75=90.考點:頻率分布直方圖.10、C【解析】特稱命題的否定為全稱命題,所以命題的否命題應該為,即本題的正確選項為C.11、B【解析】連接,再取中點,連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點,連接,因為分別為VC,中點,則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.12、D【解析】根據長方體中,異面直線和所成角即為直線和所成角,再結合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據拋物線的定義,列出方程,即可得答案.【詳解】由題意:拋物線的準線為,設點P的縱坐標為,由拋物線定義可得,解得,所以點P的縱坐標為4.故答案為:414、【解析】根據給定條件求出,構造新數列并借助單調性求解作答.【詳解】在數列中,,當,時,,則有,而滿足上式,因此,,,顯然數列是遞增數列,且,,又對任意恒成立,則,所以實數的取值范圍為.故答案為:【點睛】思路點睛:給定數列的前項和或者前項積,求通項時,先要按和分段求,然后看時是否滿足時的表達式,若不滿足,就必須分段表達.15、【解析】先求導數,得出切線斜率,寫出切線方程,然后可求三角形的面積.【詳解】,當時,,所以切線方程為,即;令可得,令可得;所以切線與坐標軸圍成的三角形面積為.故答案為:.16、【解析】求得,利用導數的幾何意義,結合直線的點斜式方程,即可求得結果.【詳解】因為,則,,,故在處的切線方程是,整理得:.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)0.06,50名(2)64(分鐘)【解析】(1)利用頻率和為1可求解頻率,再利用頻率,頻數,總數之間的關系可求解學生人數;(2)平均數:頻率分布直方圖中每個小長方形的中點乘以對應的長方形面積之和;【小問1詳解】設圖中從左到右前3個組的頻率分別為3x,8x,19x依題意,得所以.所以第一組數據的頻率為,設調查中隨機抽取了n名學生的課外活動時間,則,得,所以調查中隨機抽取了50名學生的課外活動時間小問2詳解】由題意,這組數據的平均數(分鐘)18、(1)175(2)0.004(3)該居民該戶居民應該按第二檔電價收費,理由見解析【解析】(1)在區間對應的小矩形最高,由此能求出眾數;(2)利用各個區間的頻率之和為1,即可求出值;(3)求出月均用電量的平均數的估計值即可判斷.【小問1詳解】由題知,月均用電量在區間內的居民最多,可以將這個區間的中點175作為眾數的估計值,所以眾數的估計值為175.【小問2詳解】由題知:,解得則的值為0.004.【小問3詳解】平均數的估計值為:,則月均用電量的平均數的估計值為,又∵∴該居民該戶居民應該按第二檔電價收費.19、(1);(2);(3)當點與點關于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設,可得出,,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設直線的方程為,設點、,將直線的方程與橢圓的方程聯立,列出韋達定理,由已知可得,結合韋達定理可求得的值,即可得出直線的方程;(3)設與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯立,由判別式為零可求得,分析可知當點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標,可得出結論.【小問1詳解】解:因為,設,則,,所以,橢圓的方程可表示為,將點的坐標代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設點、,則,,,不合乎題意.所以,直線的斜率存在,設直線的方程為,設點、,聯立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設與直線平行且與橢圓相切的直線的方程為,聯立,可得(*),,解得,由題意可知,當點為直線與橢圓的切點時,此時的面積取最大值,當時,方程(*)為,解得,此時,即點.此時,點與點關于軸對稱,因此,當點與點關于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關結論來求最值;二是代數法,常將圓錐曲線的最值問題轉化為二次函數或三角函數的最值問題,然后利用基本不等式、函數的單調性或三角函數的有界性等求最值20、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設斜率存在,設出直線,利用斜率之和為,求出之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當直線斜率存在時,令方程為,由得所以得方程為,過定點當直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關鍵點在于先假設斜率存在,設出直線,利用題目所給條件得到之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.21、(1)(2)【解析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 普洱學院《康復治療學》2023-2024學年第二學期期末試卷
- 商丘幼兒師范高等專科學校《跨文化交際中國視角》2023-2024學年第二學期期末試卷
- 上海工藝美術職業學院《外國音樂史及作品欣賞2》2023-2024學年第二學期期末試卷
- 池州學院《發酵工程實驗》2023-2024學年第二學期期末試卷
- 天津理工大學中環信息學院《英語視聽說(四)》2023-2024學年第二學期期末試卷
- 黑龍江大學《專業教育(2)》2023-2024學年第二學期期末試卷
- 江西工業貿易職業技術學院《高層建筑施工》2023-2024學年第二學期期末試卷
- 鶴壁能源化工職業學院《特殊兒童發展與學習》2023-2024學年第二學期期末試卷
- 江西現代職業技術學院《影視片頭(尾)》2023-2024學年第二學期期末試卷
- 遼寧城市建設職業技術學院《能源工程概論》2023-2024學年第二學期期末試卷
- 2024屆重慶市南岸區小學六年級語文畢業檢測指導卷含答案
- (正式版)HGT 6313-2024 化工園區智慧化評價導則
- 2024年陜西高職分類考試招生考試政策宣講課件
- 【真題】2023年鎮江市中考道德與法治試卷(含答案解析)
- 腦機接口技術在康復醫學中的應用與創新
- 《真空系統設計》課件
- 《新模式英語4(第二版)》 課件 Unit 7 On the Job
- 家庭語言環境與兒童語言發展
- 設備采購 投標方案(技術方案)
- 清華人工骨成人顱骨修補首選課件
- 電力行業安全檢查表(文檔-)(正式版)
評論
0/150
提交評論