廣東省茂名地區2023年高二數學第一學期期末教學質量檢測模擬試題含解析_第1頁
廣東省茂名地區2023年高二數學第一學期期末教學質量檢測模擬試題含解析_第2頁
廣東省茂名地區2023年高二數學第一學期期末教學質量檢測模擬試題含解析_第3頁
廣東省茂名地區2023年高二數學第一學期期末教學質量檢測模擬試題含解析_第4頁
廣東省茂名地區2023年高二數學第一學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省茂名地區2023年高二數學第一學期期末教學質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則復數在復平面內對應的點在()A.曲線上 B.曲線上C.直線上 D.直線上2.命題“”的一個充要條件是()A. B.C. D.3.已知集合,則()A. B.C. D.4.已知直線與直線垂直,則()A. B.C. D.35.有下列三個命題:①“若,則互為相反數”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數是A.0 B.1C.2 D.36.若一個正方體的全面積是72,則它的對角線長為()A. B.12C. D.67.方程表示的曲線經過的一點是()A. B.C. D.8.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側棱與底面垂直,若點C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.9.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.510.函數在處有極值為,則的值為()A. B.C. D.11.據記載,歐拉公式是由瑞士著名數學家歐拉發現的,該公式被譽為“數學中的天橋”特別是當時,得到一個令人著迷的優美恒等式,將數學中五個重要的數(自然對數的底,圓周率,虛數單位,自然數的單位和零元)聯系到了一起,有些數學家評價它是“最完美的數學公式”.根據歐拉公式,復數的虛部()A. B.C. D.12.為發揮我市“示范性高中”的輻射帶動作用,促進教育的均衡發展,共享優質教育資源.現分派我市“示范性高中”的5名教師到,,三所薄弱學校支教,開展送教下鄉活動,每所學校至少分派一人,其中教師甲不能到學校,則不同分派方案的種數是()A.150 B.136C.124 D.100二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值為______.14.已知平面,過空間一定點P作一直線l,使得直線l與平面,所成的角都是30°,則這樣的直線l有______條15.某校學生在研究折紙實驗中發現,當對折后紙張達到一定的厚度時,便不能繼續對折了.在理想情況下,對折次數與紙的長邊和厚度有關系:.現有一張長邊為30cm,厚度為0.05cm的矩形紙,根據以上信息,當對折完4次時,的最小值為________;該矩形紙最多能對折________次.(參考數值:,)16.在數列中,,,則數列的前6項和為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,已知矩形ABCD,,,E,F分別為AB,CD的中點,將ABCD卷成一個圓柱,使得BC與AD重合(如圖2),MNGH為圓柱的軸截面,且平面平面MNGH,NG與曲線DE交于點P(1)證明:平面平面MNGH;(2)判斷平面PAE與平面PDH夾角與的大小,并說明理由18.(12分)設集合(1)若,求;(2)設,若是成立的必要不充分條件,求實數a的取值范圍19.(12分)已知:方程表示焦點在軸上的橢圓,:方程表示焦點在軸上的雙曲線,其中.(1)若“”為真命題,求的取值范圍:(2)若“”為假命題,“”為真命題,求的取值范圍.20.(12分)如圖,在三棱柱中,點在底面內的射影恰好是點,是的中點,且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小21.(12分)在①,②,③這三個條件中任選一個,補充在下面橫線上,并解答.在中,內角,,的對邊分別為,,,且___________.(1)求角的大小;(2)已知,,點在邊上,且,求線段的長.注:如果選擇多個條件分別解答,按第一個解答計分.22.(10分)已知函數.(I)當時,求曲線在處的切線方程;(Ⅱ)若當時,,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據復數的除法運算,先化簡,進而求出,再由復數的幾何意義,即可得出結果.【詳解】因為,所以,因此復數在復平面內對應的點為,可知其在曲線上.故選:B2、D【解析】結合不等式的基本性質,利用充分條件和必要條件的定義判斷.【詳解】A.當時,滿足,推不出,故不充分;B.當時,滿足,推不出,故不充分;C.當時,推不出,故不必要;D.因為,故充要,故選:D3、B【解析】先求得集合A,再根據集合的交集運算可得選項.【詳解】解:因為,所以故選:B.4、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.5、B【解析】①寫出命題的逆命題,可以進行判斷為真命題;②原命題和逆否命題真假性相同,而通過舉例得到原命題為假,故逆否命題也為假;③寫出命題的否命題,通過舉出反例得到否命題為假【詳解】①“若,則互為相反數”的逆命題是,若互為相反數,則;是真命題;②“若,則”,當a=-1,b=-2,時不滿足,故原命題為假命題,而原命題和逆否命題真假性相同,故得到命題為假;③“若,則”的否命題是若,則,舉例當x=5時,不滿足不等式,故得到否命題是假命題;故答案為B.【點睛】這個題目考查了命題真假的判斷,涉及命題的否定,命題的否命題,逆否命題,逆命題的相關概念,注意原命題和逆否命題的真假性相同,故需要判斷逆否命題的真假時,只需要判斷原命題的真假6、D【解析】根據全面積得到正方體的棱長,再由勾股定理計算對角線.【詳解】設正方體的棱長為,對角線長為,則有,解得,從而,解得.故選:D7、C【解析】當時可得,可得答案.【詳解】當時可得所以方程表示的曲線經過的一點是,且其它點都不滿足方程,故選:C8、A【解析】先由等面積法求得的長,再以為坐標原點,建立如圖所示的空間直角坐標系,運用線面角的向量求解方法可得答案【詳解】如圖,連接交于點,過點作于,則平面,則,設,則,則根據三角形面積得,代入解得以為坐標原點,建立如圖所示的空間直角坐標系則,,設平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:9、C【解析】畫出約束條件的可行域,利用目標函數的幾何意義即可求解【詳解】作出可行域如圖所示,把目標函數轉化為,平移,經過點時,縱截距最大,所以的最大值為4.故選:C10、B【解析】根據函數在處有極值為,由,求解.【詳解】因為函數,所以,所以,,解得a=6,b=9,=-3,故選:B11、D【解析】由歐拉公式的定義和復數的概念進行求解.【詳解】由題意,得,則復數的虛部為.故選:D.12、D【解析】對甲所在組的人數分類討論即得解.【詳解】當甲一個人去一個學校時,有種;當甲所在的學校有兩個老師時,有種;當甲所在的學校有三個老師時,有種;所以共有28+48+24=100種.故選:D【點睛】方法點睛:排列組合常用方法有:簡單問題直接法、小數問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復雜問題分類法、等概率問題縮倍法.要根據已知條件靈活選擇方法求解.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】利用“1”的妙用,運用基本不等式即可求解.【詳解】∵,即,∴又∵,,∴,當且僅當且,即,時,等號成立,則的最小值為4.故答案為:.14、4【解析】設平面,在平面內作于點O,在平面內過點O作,設OM是的角平分線,過棱m上一點P作,則過點O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,直線l與平面且與平面,所成的角都是30°,在的補角一側也存在2條滿足條件的直線l,由此可得答案.【詳解】解:設平面,在平面內作于點O,在平面內過點O作,因為平面,所以,設OM是的角平分線,則,過棱m上一點P作,則過點O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,此時直線l與平面且與平面,所成的角都是30°,同理,在的補角一側也存在2條滿足條件的直線l,所以這樣的直線l有4條,故答案為:4.15、①.64②.6【解析】利用即可求解,利用和換底公式進行求解.【詳解】令,則,則,即,即當對折完4次時,最小值為;由題意,得,,則,所以該矩形紙最多能對折6次.故答案為:64,6.16、129【解析】依次寫出前6項,即可求得數列的前6項和.【詳解】數列中,,則,,,則數列的前6項和為故答案為:129三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)平面PAE與平面PDH夾角大于,理由見解析【解析】(1)由面面垂直證明,然后得證平面MNGH后可得面面垂直;(2)建立如圖所示的空間直角坐標系,用空間向量法求出二面角的余弦可得結論【小問1詳解】如圖O,為圓柱上,下底面的中心,可知,,平面平面MNGH,所以是二面角的平面角,平面平面MNGH,所以,即,,平面MNGH,所以平面MNGH,因為平面PAE,所以平面平面MNGH;【小問2詳解】因為,所以得,如圖,以為坐標原點,以,,所在直線為x,y,z軸建立空間直角坐標系,則可知,,,,,則,,,,設平面AEP的法向量為,則,令,得,設平面DHP的法向量為,則,即令,得,,設平面PAE與平面PDH夾角為,則,,因為,即,所以平面PAE與平面PDH夾角大于18、(1)(2)【解析】(1)根據不等式的解答求得,當時,求得,結合集合并集的運算,即可求解;(2)由題意得到是的真子集,根據集合間的包含關系,列出不等式組,即可求解.【小問1詳解】解:由,解得,即,當時,可得,所以.【小問2詳解】解:由集合,因為,且是成立的必要不充分條件,是的真子集,所以且等號不能同時成立,解得,其中當和是滿足題意,故實數的取值范圍是.19、(1)或(2)【解析】(1)先假設命題為真命題,求出的取值范圍,為真命題,取補集即可(2)假設命題為真命題,求出的取值范圍,根據題意,則命題假設和命題一真一假,分類討論求的取值范圍【小問1詳解】解:若為真命題,則,解得,若“”為真命題,則為假命題,或;【小問2詳解】若為真命題,則解得,若“”為假命題,則“”為真命題,則與一真一假,①若真假,則解得,②若真假,則解得,綜上所述,,即的取值范圍為.20、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點,為x、y、z軸正方向建立空間直角坐標系,用向量法求二面角的平面角.【小問1詳解】因為點在底面內的射影恰好是點,所以面.因為面,所以.因為是的中點,且滿足.所以,所以.因為,所以,即,所以.因為,面,面,所以平面.【小問2詳解】∵面,∴直線與底面所成角為,即.因為,所以由(1)知,,因,所以,.如圖示,以C為原點,為x、y、z軸正方向建立空間直角坐標系.則,,,,所以,設,由得,,即.則.設平面BDC1的一個法向量為,則,不妨令,則.因為面,所以面的一個法向量為記二面角的平面角為,由圖知,為銳角.所以,即.所以二面角的大小為.21、(1)(2)【解析】(1)若選①,則根據正弦定理,邊化角,結合二倍角公式,求得,可得答案;若選②,則根據余弦定理和三角形面積公式,將化簡,求得,可得答案;若選③,則切化弦,化簡可得到的值,求得答案;(2)由余弦定理求出,進而求得,設,,在中用余弦定理列出方程,求得答案.【小問1詳解】若選①,則根據正弦定理可得:,由于,,故,則;若選②,則,即,則,而,故;若選③,則,即,則,而,故;【小問2詳解】如圖示:,故,故,在中,設,則,則,即,解得,或(舍去)故.22、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點斜式可求曲線在處的切線方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論