




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省廈門市外國語學校2024屆高二上數學期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數,若為奇函數,則曲線在點處的切線方程為()A. B.C. D.2.早在古希臘時期,亞歷山大的科學家赫倫就發現:光從一點直接傳播到另一點選擇最短路徑,即這兩點間的線段.若光從一點不是直接傳播到另一點,而是經由一面鏡子(即便鏡面是曲面)反射到另一點,仍然選擇最短路徑.已知曲線,且將假設為能起完全反射作用的曲面鏡,若光從點射出,經由上一點反射到點,則()A. B.C. D.3.方程表示的曲線是A.兩條直線 B.兩條射線C.兩條線段 D.一條直線和一條射線4.設x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.設P是雙曲線上的點,若,是雙曲線的兩個焦點,則()A.4 B.5C.8 D.106.若直線經過,,兩點,則直線的傾斜角的取值范圍是()A. B.C. D.7.設命題甲:,命題乙:直線與直線平行,則()A.甲是乙的充分不必要條件 B.甲是乙的必要不充分條件C.甲是乙的充要條件 D.甲是乙的既不充分也不必要條件8.已知某地區7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,從中隨機選一人,則此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037459.在某市第一次全民核酸檢測中,某中學派出了8名青年教師參與志愿者活動,分別派往2個核酸檢測點,每個檢測點需4名志愿者,其中志愿者甲與乙要求在同一組,志愿者丙與丁也要求在同一組,則這8名志愿者派遣方法種數為()A.20 B.14C.12 D.610.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若,則k的取值范圍是()A. B.(-∞,]∪[0,+∞)C. D.11.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A B.C. D.12.正三棱柱各棱長均為為棱的中點,則點到平面的距離為()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,…,為拋物線:上的點,為拋物線的焦點.在等比數列中,,,,…,.則的橫坐標為__________14.以點為圓心,為半徑的圓的標準方程是_____________.15.數列的前項和為,則_________________.16.若橢圓的焦點在軸上,過點作圓的切線,切點分別為,,直線恰好經過橢圓的上焦點和右頂點,則橢圓的方程是________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦點為,且該橢圓過點(1)求橢圓的標準方程;(2)若橢圓上的點滿足,求的值18.(12分)雙曲線的離心率為,虛軸的長為4.(1)求的值及雙曲線的漸近線方程;(2)直線與雙曲線相交于互異兩點,求的取值范圍.19.(12分)已知橢圓的左、右頂點坐標分別是,,短軸長等于焦距.(1)求橢圓的方程;(2)若直線與橢圓相交于兩點,線段的中點為,求.20.(12分)已知橢圓過點,且離心率.(1)求橢圓的方程;(2)設直交橢圓于兩點,判斷點與以線段為直徑的圓的位置關系,并說明理由.21.(12分)設橢圓的左,右焦點分別為,其離心率為,且點在C上.(1)求C的方程;(2)O為坐標原點,P為C上任意一點.若M為的中點,過M且平行于的直線l交橢圓C于A,B兩點,是否存在實數,使得?若存在,求值;若不存在,說明理由.22.(10分)設命題p:實數x滿足x≤2,或x>6,命題q:實數x滿足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且為真命題,求實數x的取值范圍;(2)若q是的充分不必要條件,求實數a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用函數的奇偶性求出,求出函數的導數,根據導數的幾何意義,利用點斜式即可求出結果【詳解】函數的定義域為,若為奇函數,則則,即,所以,所以函數,可得;所以曲線在點處的切線的斜率為,則曲線在點處的切線方程為,即故選:C2、B【解析】記橢圓的右焦點為,根據橢圓定義,得到,由題中條件,確定本題的本質即是求的最小值,結合題中數據,即可求出結果.【詳解】記橢圓的右焦點為,根據橢圓的定義可得,,所以,因為,當且僅當三點共線時,,即;由題意可得,求的值,即是求最短路徑,即求的最小值,所以的最小值為,因此.故選:B.【點睛】思路點睛:求解橢圓上動點到一焦點和一定點距離和的最小值或差的最大值時,一般需要利用橢圓的定義,將問題轉化為動點與另一焦點以及該定點距離和的最值問題來求解即可.3、D【解析】由,得2x+3y?1=0或.即2x+3y?1=0(x?3)為一條射線,或x=4為一條直線.∴方程表示的曲線是一條直線和一條射線.故選D.點睛:在直角坐標系中,如果某曲線C(看作點的集合或適合某種條件的點的軌跡)上的點與一個二元方程f(x,y)=0的實數解建立了如下的關系:(1)曲線上點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點那么,這個方程叫做曲線的方程,這條曲線叫做方程的曲線在求解方程時要注意變量范圍.4、B【解析】利用充分條件、必要條件的定義可得出結論.【詳解】,因此,“”是“”必要不充分條件.故選:B.5、C【解析】根據雙曲線的定義可得:,結合雙曲線的方程可得答案.【詳解】由雙曲線可得根據雙曲線的定義可得:故選:C6、D【解析】應用兩點式求直線斜率得,結合及,即可求的范圍.【詳解】根據題意,直線經過,,,∴直線的斜率,又,∴,即,又,∴;故選:D7、A【解析】根據充分條件和必要條件的定義,結合兩直線平行的性質進行求解即可.【詳解】當時,直線的方程為,直線方程為,此時,直線與直線平行,即甲乙;直線和直線平行,則,解得或,即乙甲;則甲是乙的充分不必要條件.故選:.8、D【解析】設出事件,利用全概率公式進行求解.【詳解】用事件A,B分別表示隨機選1人為男性或女性,用事件C表示此人恰是色盲,則,且A,B互斥,故故選:D9、B【解析】分(甲乙)、(丙丁)再同一組和不在同一組兩種情況討論,按照分類、分步計數原理計算可得;【詳解】解:依題意甲乙丙丁四人再同一組,有種;(甲乙),(丙丁)不在同一組,先從其余4人選2人與甲乙作為一組,另外2人與丙丁作為一組,再安排到兩個核酸檢測點,則有種,綜上可得一共有種安排方法,故選:B10、A【解析】圓心為,半徑為2,圓心到直線的距離為,解不等式得k的取值范圍考點:直線與圓相交的弦長問題11、A【解析】設直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設過點的直線.由直線與圓、圓均相切,得解得(1).設點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結合(1)(2)兩式,解得12、C【解析】建立空間直角坐標系,利用點面距公式求得正確答案.【詳解】設分別是的中點,根據正三棱柱的性質可知兩兩垂直,以為原點建立如圖所示空間直角坐標系,,,.設平面的法向量為,則,故可設,所以點到平面的距離為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用在拋物線上可求得,結合等比數列的公比可求得,利用拋物線的焦半徑公式即可求得結果.【詳解】在拋物線上,,解得:,拋物線;數列為等比數列,又,,公比,,即,解得:,即的橫坐標為.故答案為:.14、【解析】直接根據已知寫出圓的標準方程得解.【詳解】解:由題得圓的標準方程為.故答案為:15、【解析】利用計算可得出數列的通項公式.【詳解】當時,;而不適合上式,.故答案:.16、【解析】設過點的圓的切線為,分類討論求得直線分別與圓的切線,求得直線的方程,從而得到直線與軸、軸的交點坐標,得到橢圓的右焦點和上頂點,進而求得橢圓的方程.【詳解】設過點的圓的切線分別為,即,當直線與軸垂直時,不存在,直線方程為,恰好與圓相切于點;當直線與軸不垂直時,原點到直線的距離為,解得,此時直線的方程為,此時直線與圓相切于點,因此,直線的斜率為,直線的方程為,所以直線交軸交于點,交于軸于點,橢圓的右焦點為,上頂點為,所以,可得,所以橢圓的標準方程為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用兩點間距離公式求得P到橢圓的左右焦點的距離,然后根據橢圓的定義得到a的值,結合c的值,利用a,b,c的平方關系求得的值,再結合焦點位置,寫出橢圓的標準方程(2)利用向量的數量積,求得點滿足的條件,再結合橢圓的方程,解得的值【小問1詳解】解:設橢圓的長半軸長為a,短半軸長為b,半焦距為c,因為所以,即,又因為c=2,所以,又因為橢圓的中心在原點,焦點在x軸上,所以該橢圓的標準方程為.【小問2詳解】解:因為,所以,即,又,所以,即.18、(1),,雙曲線的漸近線方程為和;(2).【解析】(1)根據雙曲線的離心率公式,結合虛軸長的定義進行求解即可;(2)將直線方程與雙曲線方程聯立,利用方程解的個數進行求解即可.【小問1詳解】因為雙曲線的離心率為,所以有ca而該雙曲線的虛軸的長為4,所以,所以,因此雙曲線的浙近線方程為:y=±x?x-y=0或;【小問2詳解】由(1)可知:,,所以該雙曲線的標準方程為:,與直線聯立得:,因為直線與雙曲線相交于互異兩點,所以有:且,所以的取值范圍為:.19、(1);(2).【解析】(1)由橢圓頂點可知,又短軸長等于焦距可知,求出,即可寫出橢圓方程(2)根據“點差法”可求直線的斜率,寫出直線方程,聯立橢圓方程可得,,代入弦長公式即可求解.【詳解】(1)依題意,解得.故橢圓方程為.(2)設的坐標分別為,,直線的斜率顯然存在,設斜率為,則,兩式相減得,整理得.因為線段的中點為,所以,所以直線的方程為,聯立,得,則,,故.【點睛】本題主要考查了橢圓的標準方程及簡單幾何性質,“點差法”,弦長公式,屬于中檔題.20、(1)(2)點G在以AB為直徑的圓外【解析】解法一:(Ⅰ)由已知得解得所以橢圓E的方程為(Ⅱ)設點AB中點為由所以從而.所以.,故所以,故G在以AB為直徑的圓外解法二:(Ⅰ)同解法一.(Ⅱ)設點,則由所以從而所以不共線,所以銳角.故點G在以AB為直徑的圓外考點:1、橢圓的標準方程;2、直線和橢圓的位置關系;3、點和圓的位置關系21、(1);(2).【解析】(1)列出關于a、b、c的方程組求解即可;(2)直線l斜率不存在時,易得λ的值;斜率存在時,設l方程為,聯立直線l與橢圓C的方程,求出;求出OP方程,聯立OP方程與橢圓C的方程,求出;代入即可求得λ.【小問1詳解】由已知可得,解得,∴橢圓C的標準方程為.【小問2詳解】若直線的斜率不存在時,,∴;當斜率存在時,設直線l的方程為.聯立直線l與橢圓方程,消去y,得,∴.∵,設直線的方程為,聯立直線與橢圓方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在滿足條件,綜上可得,存在滿足條件.【點睛】關鍵點點睛:本題的關鍵在于弦長公式的運用,AB斜率為k,,M(1,0),則,,,將弦長之積轉化為韋達定理求解.22、(1){x|2<x<4};(2).【解析】(1)分別求出命題和為真時對應的取值范圍,即可求出;(2)由題可知,列出不等式組即可求解.【詳解】解:(1)當a=2時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑初步清吧設計方案
- 2025-2026學年無錫市數學三年級第一學期期末質量檢測試題含解析
- 備考公共關系學的重點與試題及答案
- 公共關系學的挑戰與機遇試題與答案討論
- 2025年中級經濟師考試的校園系列活動試題及答案
- 2022 年中級會計師考試《中級財務管理》真題及解析(9 月 3 日)
- 環保設備維護與更新手冊
- 建筑學建筑設計原則題庫
- 日用百貨供應協議
- 2025市政工程考試答案解析試題及答案
- 【大數據殺熟的法律規制問題探究20000字(論文)】
- DGJ08-2117-2012 裝配整體式混凝土結構施工及質量驗收規范
- 園林綠化工程監理實施細則
- 《充氣式開關柜運維檢修試驗安全導則》
- 2024春期國開電大本科《公共部門人力資源管理》在線形考(形考任務1至4)試題及答案
- 微生物實驗室改造項目可行性研究報告
- 甲方設計崗位面試問題
- 藥物化學(廣東藥科大學)智慧樹知到期末考試答案2024年
- HG-T 4823-2023 電池用硫酸錳
- 內鏡室院感知識培訓
- 四巧板制作與拼接活動
評論
0/150
提交評論