




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆云南省大理州大理市下關第一中學高二上數學期末經典試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F為橢圓的右焦點,A為C的右頂點,B為C上的點,且垂直于x軸.若直線AB的斜率為,則橢圓C的離心率為()A. B.C. D.2.已知不等式解集為,下列結論正確的是()A. B.C D.3.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.64.拋物線的準線方程是,則實數的值為()A. B.C.8 D.5.已知直線過點,當直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.6.已知為定義在R上的偶函數函數,且在單調遞減.若關于的不等式在上恒成立,則實數m的取值范圍是()A. B.C. D.7.某考點配備的信號檢測設備的監測范圍是半徑為100米的圓形區域,一名工作人員持手機以每分鐘50米的速度從設備正東方向米的處出發,沿處西北方向走向位于設備正北方向的處,則這名工作人員被持續監測的時長為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘8.如圖,在直三棱柱中,D為棱的中點,,,,則異面直線CD與所成角的余弦值為()A. B.C. D.9.工業生產者出廠價格指數(PRoduceRPRiceIndexfoRIndustRialPRoducts,簡稱PPI)是反映工業企業產品第一次出售時的出廠價格的變化趨勢和變動幅度,是反映某一時期生產領域價格變動情況的重要經濟指標,也是制定有關經濟政策和國民經濟核算的重要依據.根據下面提供的我國2020年1月—2021年11月的工業生產者出廠價格指數的月度同比(將上一年同月作為基期進行對比的價格指數)和月度環比(將上月作為基期進行對比的價格指數)漲跌情況的折線圖判斷,以下結論正確的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月減小D.2021年1月—11月各月的PPI均高于2020年同期水平10.下列命題中正確的是()A.拋物線的焦點坐標為B.拋物線的準線方程為x=?1C.拋物線的圖象關于x軸對稱D.拋物線的圖象關于y軸對稱11.在直角坐標系中,直線的傾斜角是A.30° B.60°C.120° D.150°12.若不等式在上有解,則的最小值是()A.0 B.-2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為等比數列的前n項和,若,,則_____________.14.已知遞增數列共有2021項,且各項均不為零,,如果從中任取兩項,當時,仍是數列中的項,則的范圍是________________,數列的所有項和________15.橢圓(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1,F2.若|AF1|,|F1F2|,|F1B|成等比數列,則此橢圓的離心率為___________16.函數的單調遞減區間是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,點在上,,且(1)求出直線所過定點的坐標;(不需要證明)(2)過A點作的垂線,垂足為,是否存在點,使得為定值?若存在,求出的值;若不存在,說明理由.18.(12分)已知函數,在處有極值.(1)求、的值;(2)若,有個不同實根,求的范圍.19.(12分)某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為(1)求頻率分布直方圖中的值;(2)估計該企業的職工對該部門評分不低于80的概率;(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.20.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若.證明:為定值21.(12分)已如橢圓C:=1(a>b>0)的有頂點為M(2,0),且離心率e=,點A,B是橢圓C上異于點M的不同的兩點(Ⅰ)求橢圓C的方程;(Ⅱ)設直線MA與直線MB的斜率分別為k1,k2,若k1?k2=,證明:直線AB一定過定點22.(10分)已知數列的前n項和為,且滿足(1)證明數列是等比數列;(2)若數列滿足,證明數列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據題意表示出點的坐標,再由直線AB的斜率為,列方程可求出橢圓的離心率【詳解】由題意得,,當時,,得,由題意可得點在第一象限,所以,因為直線AB的斜率為,所以,化簡得,所以,,得(舍去),或,所以離心率,故選:D2、C【解析】根據不等式解集為,得方程解為或,且,利用韋達定理即可將用表示,即可判斷各選項的正誤.【詳解】解:因為不等式解集為,所以方程的解為或,且,所以,所以,所以,故ABD錯誤;,故C正確.故選:C.3、B【解析】作出圖象,過點M作準線的垂線,垂足為H,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,求解即可【詳解】過點M作準線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉化為|MA|+|MH|的最小值,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B4、B【解析】化簡方程為,求得拋物線的準線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準線方程為,因為拋物線的準線方程為,所以,解得.故選:B.5、A【解析】設直線方程,利用圓與直線的關系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A6、C【解析】由條件利用函數的奇偶性和單調性,可得對恒成立,轉化為且對恒成立.求得相應的最大值和最小值,從而求得的范圍【詳解】定義在上的函數為偶函數,且在上遞減,在上單調遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當時,,在上遞減,故可知,解得,所以實數m的取值范圍是故選:C7、C【解析】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,求得直線和圓的方程,利用點到直線的距離公式和圓的弦長公式,求得的長,進而求得持續監測的時長.【詳解】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,如圖所示,則,,可得,圓記從處開始被監測,到處監測結束,因為到的距離為米,所以米,故監測時長為分鐘故選:C.8、A【解析】以C為坐標原點,分別以,,方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系.運用異面直線的空間向量求解方法,可求得答案.【詳解】解:以C為坐標原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系.由已知可得,,,,則,,所以.又因為異面直線所成的角的范圍為,所以異面直線與所成角的余弦值為.故選:A.9、D【解析】根據折線圖中同比、環比的正負情況,結合各選項的描述判斷正誤.【詳解】A:2020年前5個月PPI在逐月減小,錯誤;B:2020年各月同比為負值,即低于2019年同期水平,錯誤;C:2021年1月—11月各月的PPI環比為正值,即逐月增大,錯誤;D:2021年1月—11月各月的PPI同比為正值,即高于2020年同期水平,正確.故選:D.10、C【解析】根據拋物線的性質逐項分析可得答案.【詳解】拋物線的焦點坐標為,故A錯誤;拋物線的準線方程為,故B錯誤;拋物線的圖象關于x軸對稱,故C正確,D錯誤;故選:C.11、D【解析】根據直線方程得到直線的斜率后可得直線的傾斜角.【詳解】設直線的傾斜角為,則,因,故,故選D.【點睛】直線的斜率與傾斜角的關系是:,當時,直線的斜率不存在,注意傾斜角的范圍.12、D【解析】將題設條件轉化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設,則在上單調遞減,所以,所以,即,故選:D.【點睛】本題主要考查二次不等式能成立問題,可以選擇分離參數轉化為最值問題,也可以進行分情況討論.二、填空題:本題共4小題,每小題5分,共20分。13、30【解析】根據等比數列性質得,,也成等比,即可求得結果.【詳解】由等比數列的性質可知,,,構成首項為10,公比為1的等比數列,所以【點睛】本題考查等比數列性質,考查基本求解能力,屬基礎題.14、①.②.1011【解析】根據題意得到,得到,,,,進而得到,從而即可求得的值.【詳解】由題意,遞增數列共有項,各項均不為零,且,所以,所以的范圍是,因為時,仍是數列中的項,即,且上述的每一項均在數列中,所以,,,,即,所以,所以.故答案為:;.15、【解析】本題著重考查等比中項的性質,以及橢圓的離心率等幾何性質,同時考查了函數與方程,轉化與化歸思想.利用橢圓及等比數列的性質解題.由橢圓的性質可知:,,.又已知,,成等比數列,故,即,則.故.即橢圓的離心率為.【點評】求雙曲線的離心率一般是通過已知條件建立有關的方程,然后化為有關的齊次式方程,進而轉化為只含有離心率的方程,從而求解方程即可.體現考綱中要求掌握橢圓的基本性質.來年需要注意橢圓的長軸,短軸長及其標準方程的求解等.16、【解析】首先對求導,可得,令,解可得答案【詳解】解:由得,故的單調遞減區間是故答案為:【點睛】本題考查利用導數研究函數的單調性,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在兩種情況,當斜率存在時,設出直線方程,聯立橢圓方程,利用韋達定理列出方程,求出定點坐標,當斜率不存在時,設出點的坐標進行求解;(2)結合第一問的定點坐標,結合直角三角形斜邊中線得到存在點,使得為定值,求出結果.【小問1詳解】設點,若直線斜率存在時,設直線的方程為:,代入橢圓方程消去并整理得:,可得,因為,所以,即,根據,代入整理可得:,所以,整理化簡得:,因為不在直線上,所以,故,于是的方程為,所以直線過定點直線過定點.當直線的斜率不存在時,可得,由得:,得,結合可得:,解得:或(舍).此時直線過點【小問2詳解】由(1)可知因為,取中點,則此時,【點睛】直線過定點問題,一般處理思路是分斜率存在和斜率不存在兩種情況,特別是斜率存在時,設出直線為,聯立后用韋達定理得到兩根之和與兩根之積,結合題干條件得到等量關系,求出的關系,進而得到定點坐標.18、(1),(2)【解析】(1)根據題設條件可得,由此可解得與的值(2)依題意可知直線與函數的圖象有三個不同的交點,則的取值范圍介于極小值與極大值之間.【小問1詳解】因為函數,在處有極值,所以,即,解得,.【小問2詳解】由(1)知,,所以在上,,單調遞增,在上,,單調遞減,在上,,單調遞增,所以,,若有3個不同實根,則,所以的取值范圍為.19、(1)0.006;(2);(3).【解析】(1)在頻率分布直方圖中,由頻率總和即所有矩形面積之和為,可求;(2)在頻率分布直方圖中先求出50名受訪職工評分不低于80的頻率為,由頻率與概率關系可得該部門評分不低于80的概率的估計值為;(3)受訪職工評分在[50,60)的有3人,記為,受訪職工評分在[40,50)的有2人,記為,列出從這5人中選出兩人所有基本事件,即可求相應的概率.【詳解】(1)因為,所以(2)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為,所以該企業職工對該部門評分不低于80的概率的估計值為(3)受訪職工評分在[50,60)的有:50×0.006×10=3(人),即為;受訪職工評分在[40,50)的有:50×0.004×10=2(人),即為.從這5名受訪職工中隨機抽取2人,所有可能的結果共有10種,它們是又因為所抽取2人的評分都在[40,50)的結果有1種,即,故所求的概率為【點睛】本題考查頻率分布直方圖、概率與頻率關系、古典概型,屬中檔題;利用頻率分布直方圖解題的時,注意其表達的意義,同時要理解頻率是概率的估計值這一基礎知識;在利用古典概型解題時,要注意列出所有的基本事件,千萬不可出現重、漏的情況.20、(1);(2)證明見解析.【解析】(1)根據橢圓離心率和橢圓經過的點建立方程組,求解方程組可得橢圓的方程;(2)先根據相切求出直線的斜率,結合可得,再逐個求解,,然后可證結論.【小問1詳解】解:由題意,解得故橢圓C的方程為.【小問2詳解】證明:設直線的方程為,聯立得,因為直線與橢圓C相切,所以判別式,即,整理得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 25年公司安全管理員安全培訓考試試題含答案【考試直接用】
- 2024-2025職工安全培訓考試試題有解析答案
- 2024-2025項目部安全培訓考試試題含答案(新)
- 2025雙方協商解除勞動合同協議書樣本
- 2025刺繡工藝合作合同書
- 2025鋁合金風管系統安裝工程合同
- 2025代理銷售合同范本
- 2025年大功率激光傳輸石英光纖項目建議書
- 2025商業地產銷售代理合同
- 2025年基因缺失重組疫苗項目合作計劃書
- 電子書 -《商業的底層邏輯》
- 農貿市場消防應急預案演練總結
- 2023年湖北宜昌高新區社區專職工作人員(網格員)招聘考試真題及答案
- 外貿談判知識分享課件
- 《患者疼痛管理》課件
- 基于AI人工智能的智慧園區融合感知平臺建設方案
- JB T 7689-2012懸掛式電磁除鐵器
- 課件-錯賬更正
- 現代漢語語料庫詞頻表CorpusWordlist
- GB/T 5465.2-2023電氣設備用圖形符號第2部分:圖形符號
- 學校德育活動安排表
評論
0/150
提交評論