




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆天津四中數學高二上期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.2.1202年,意大利數學家斐波那契出版了他的《算盤全書》.他在書中收錄了一些有意思的問題,其中有一個關于兔子繁殖的問題:如果1對兔子每月生1對小兔子(一雌一雄),而每1對小兔子出生后的第3個月里,又能生1對小兔子,假定在不發生死亡的情況下,如果用Fn表示第n個月的兔子的總對數,則有(n>2),.設數列{an}滿足:an=,則數列{an}的前36項和為()A.11 B.12C.13 D.183.將一個表面積為的球用一個正方體盒子裝起來,則這個正方體盒子的最小體積為()A. B.C. D.4.設,命題“若,則或”的否命題是()A.若,則或B.若,則或C.若,則且D.若,則且5.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結論中,正確結論的序號是A.①②③ B.②④C.③④ D.②③④6.如圖,空間四邊形中,,,,且,,則()A. B.C. D.7.過拋物線的焦點F的直線l與拋物線交于PQ兩點,若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.58.已知為等比數列的前n項和,,,則()A.30 B.C. D.30或9.圓:與圓:的位置關系是()A.內切 B.外切C.相交 D.相離10.已知橢圓C:的左、右焦點分別為F1,F2,過點F1作直線l交橢圓C于M,N兩點,則的周長為()A.3 B.4C.6 D.811.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.212.已知數列滿足,,記數列的前n項和為,若對于任意,不等式恒成立,則實數k的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的左焦點到直線的距離為________.14.已知雙曲線的兩個焦點分別為,,為雙曲線上一點,且,則的值為________15.雙曲線上的一點到一個焦點的距離等于1,那么點到另一個焦點的距離為_________.16.如圖是用斜二測畫法畫出水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD為正方形,M、N、Q分別為AD、PD、BC的中點(1)證明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值18.(12分)在平面直角坐標系xOy中,已知橢圓的左、右焦點分別是,,離心率,請再從下面兩個條件中選擇一個作為已知條件,完成下面的問題:①橢圓C過點;②以點為圓心,3為半徑的圓與以點為圓心,1為半徑的圓相交,且交點在橢圓C上(只能從①②中選擇一個作為已知)(1)求橢圓C的方程;(2)已知過點的直線l交橢圓C于M,N兩點,點N關于x軸的對稱點為,且,M,三點構成一個三角形,求證:直線過定點,并求面積的最大值.19.(12分)已知函數(a為非零常數)(1)若f(x)在處的切線經過點(2,ln2),求實數a的值;(2)有兩個極值點,.①求實數a的取值范圍;②若,證明:.20.(12分)如圖,在四棱錐P-ABCD中,平面ABCD,,,,,.(1)證明:平面平面PAC;(2)求平面PCD與平面PAB夾角的余弦值.21.(12分)已知數列的前項和為,若.(1)求的通項公式;(2)設,求數列的前項和.22.(10分)為了解某城中村居民收入情況,小明利用周末時間對該地在崗居民月收入進行了抽樣調查,并將調查數據整理得到如下頻率分布直方圖:根據直方圖估算:(1)在該地隨機調查一位在崗居民,該居民收入在區間內的概率;(2)該地區在崗居民月收入的平均數和中位數;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A2、B【解析】由奇數+奇數=偶數,奇數+偶數=奇數可知,數列{Fn}中F3,F6,F9,F12,,F3n為偶數,其余項都為奇數,再根據an=,即可求出數列{an}的前36項和【詳解】由奇數+奇數=偶數,奇數+偶數=奇數可知,數列{Fn}中F3,F6,F9,F12,,F3n為偶數,其余項都為奇數,∴前36項共有12項為偶數,∴數列{an}的前36項和為12×1+24×0=12.故選:B3、C【解析】求出球的半徑,要使這個正方形盒子的體積最小,則這個正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,從而可得出答案.【詳解】解:設球的半徑為,則,得,故該球的半徑為11cm,若要使這個正方形盒子的體積最小,則這個正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,即22cm,所以這個正方體盒子的最小體積為.故選:C.4、C【解析】根據否命題的定義直接可得.【詳解】根據否命題的定義可得命題“若,則或”的否命題是若,則且,故選:C.5、C【解析】根據平面展開圖可得原正方體,根據各點的分布逐項判斷可得正確的選項.【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補角為與所成的角,因為,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點睛】本題考查正方體的平面展開圖,注意展開圖中的點與正方體中的頂點的對應關系,本題屬于容易題.6、C【解析】根據空間向量的線性運算即可求解.【詳解】因為,又因為,,所以.故選:C7、C【解析】依據拋物線定義可以證明:以過拋物線焦點F的弦PQ為直徑的圓與其準線相切,則可以順利求得線段的長.【詳解】拋物線的焦點F,準線取PQ中點H,分別過P、Q、H作拋物線準線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點H到拋物線準線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C8、A【解析】利用等比數列基本量代換代入,列方程組,即可求解.【詳解】由得,則等比數列的公比,則得,令,則即,解得或(舍去),,則故選:A9、A【解析】先計算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內切.故選:A.10、D【解析】由的周長為,結合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據橢圓的定義,可得的周長為故選:D.11、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.12、C【解析】由已知得,根據等比數列的定義得數列是首項為,公比為的等比數列,由此求得,然后利用裂項求和法求得,進而求得的取值范圍.【詳解】解:依題意,當時,,則,所以數列是首項為,公比為的等比數列,,即,所以,所以,所以的取值范圍是.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據雙曲線方程求得左焦點的坐標,利用點到直線的距離公式即可求得結果.【詳解】因為雙曲線的方程為,設其左焦點的坐標為,故可得,解得,故左焦點的坐標為,則其到直線的距離.故答案為:.14、2【解析】求得雙曲線的a,b,c,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,利用雙曲線的定義、余弦定理列出方程組,求出mn即可.【詳解】雙曲線的a=2,b=1,c=,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,則,①由余弦定理可得,②聯立①②可得故答案為:215、【解析】首先將已知的雙曲線方程轉化為標準方程,然后根據雙曲線的定義知雙曲線上的點到兩個焦點的距離之差的絕對值為,即可求出點到另一個焦點的距離為17.考點:雙曲線的定義.16、【解析】根據直觀圖和平面圖的關系可求出,進而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明過程見解析(2)【解析】(1)由線線平行證明線面平行;(2)建立空間直角坐標系,利用空間向量進行求解二面角的余弦值.【小問1詳解】因為M,N是DA,PD的中點,所以MN//AP,因為平面PAQ,平面PAQ,所以MN//平面PAQ因為四邊形ABCD為正方形,且Q為BC中點,所以MA//CQ,且MA=CQ,所以四邊形MAQC為平行四邊形,所以CM//AQ,因為平面PAQ,平面PAQ,所以MC//平面PAQ,因為,所以面PAQ//面MNC【小問2詳解】因為PD⊥CD,PD⊥AD,AD⊥CD故以D為坐標原點,DA所在直線為x軸,DC所在直線為y軸,DP所在直線為z軸建立空間直角坐標系,則,,,設平面NMC的法向量為,則,令得:,所以,平面NDC的法向量為,則,設二面角M-NC-D的大小為,顯然為銳角,則18、(1)(2)證明見解析,【解析】(1)若選①,則由題意可得,解方程組求出,從而可求得橢圓方程,若選②,,再結合離心率和求出,從而可求得橢圓方程,(2)由題意設直線MN的方程為,設,,,將直線方程代入橢圓方程中,消去,再利用根與系數的關系,表示出直線的方程,令,求出,結合前面的式子化簡可得線過的定點,表示出的面積,利用基本不等式可求得其最大值【小問1詳解】若選①:由題意知,∴.所以橢圓C的方程為.若選②:設圓與圓相交于點Q.由題意知:.又因為點Q在橢圓上,所以,∴.又因為,∴,∴.所以橢圓C的方程為.【小問2詳解】由題易知直線MN斜率存在且不為0,因為,故設直線MN方程為,設,,,∴,∴,,因為點N關于x軸對稱點為,所以,所以直線方程為,令,∴.又,∴.所以直線過定點,∴.當且僅當,即時,取等號.所以面積的最大值為.19、(1)(2)①(0,1);②證明見解析【解析】小問1先求出切線方程,再將點(2,ln2),代入即可求出a的值;小問2的①通過求導,再結合函數的單調性求出a的取值范圍;②結合已知條件,構造新函數即可得到證明.【小問1詳解】,∴切線方程為,將點代入解得:【小問2詳解】①當時,即時,,f(x)在(-1,+∞)上單調遞增;f(x)無極值點,當時,由得,,故f(x)在(-1,-)上單調遞增,在(-,)上單調遞減,在(,+∞)上單調遞增,f(x)有兩個極值點;.當時,由得,,f(x)(,)上單調遞減,在(,+∞)上單調遞此時,f(x)有1個極值點,綜上,當時,f(x)有兩個極值點,即,即a的范圍是(0,1)②由(2)可知,又由可知,可得.要證,即證,即證,即證即證令函數,x(0,1),故t(x)在(0,1)上單調遞增,又所以在上恒成立,即所以.20、(1)證明見解析(2)【解析】(1)過點C作于點H,由平面幾何知識證明,然后由線面垂直的性質得線線垂直,從而得線面垂直,然后可得面面垂直;(2)建立如圖所示的空間直角坐標系,用空間向量法求二面角【小問1詳解】在梯形ABCD中,過點C作于點H.由,,,,可知,,,.所以,即,①因為平面ABCD,平面ABCD,所以,②由①②及,平面PAC,得平面PAC.又由平面PCD,所以平面平面PAC.【小問2詳解】因為AB,AD,AP兩兩垂直,所以以A為原點,以AB,AD,AP所在的直線分別為x,y,z軸建立空間直角坐標系,可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,3),,.設平面PCD的法向量為,則,取,則,,則.平面PAB的一個法向量為,所以,所以平面PCD與平面PAB所成的銳二面角的余弦值為.21、(1)(2)【解析】(1)根據所給條件先求出首項,然后仿寫,作差即可得到的通項公式;(2)根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品經營質量管理制度
- 藥品采購預警管理制度
- 藥店辦公日常管理制度
- 藥店服務衛生管理制度
- 莆田校外托管管理制度
- 薪酬福利職級管理制度
- 設備升級改造管理制度
- 設備定期檢定管理制度
- 設備日常使用管理制度
- 設備生產人員管理制度
- 2025年中式烹調師(技師)理論考試筆試試題(50題)含答案
- DB61∕T 1914-2024 煤礦安全風險分級管控和隱患排查治理 雙重預防機制建設與運行規范
- 種植二期手術護理配合
- 行政事業單位內部控制工作中存在的問題與遇到的困難
- 人工智能在醫療器械中的應用-全面剖析
- 智慧農旅綜合體項目可行性研究報告(參考范文)
- 2025年標準離婚協議書范本完整版
- 四川2024年11月四川南充市人民政府辦公室遴選(考調)工作人員3人國家公務員考試消息筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年云南省保山市隆陽區小升初模擬數學測試卷含解析
- 2024年鄭州市公安機關招聘警務輔助人員筆試真題
- 火災解封申請書
評論
0/150
提交評論