2024屆四川省成都市成外高二上數學期末學業質量監測試題含解析_第1頁
2024屆四川省成都市成外高二上數學期末學業質量監測試題含解析_第2頁
2024屆四川省成都市成外高二上數學期末學業質量監測試題含解析_第3頁
2024屆四川省成都市成外高二上數學期末學業質量監測試題含解析_第4頁
2024屆四川省成都市成外高二上數學期末學業質量監測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省成都市成外高二上數學期末學業質量監測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.2.某商場為了解銷售活動中某商品銷售量與活動時間之間的關系,隨機統計了某次銷售活動中的商品銷售量與活動時間,并制作了下表:活動時間銷售量由表中數據可知,銷售量與活動時間之間具有線性相關關系,算得線性回歸方程為,據此模型預測當時,的值為()A B.C. D.3.已知為虛數單位,復數是純虛數,則()A. B.4C.3 D.24.斗笠,用竹篾夾油紙或竹葉粽絲等編織,是人們遮陽光和雨的工具.某斗笠的三視圖如圖所示(單位:),若該斗笠水平放置,雨水垂直下落,則該斗笠被雨水打濕的面積為()A. B.C. D.5.直線的斜率是方程的兩根,則與的位置關系是()A.平行 B.重合C.相交但不垂直 D.垂直6.函數的導函數為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調遞增C.一定有最小值 D.不等式一定有解7.已知數列為等比數列,若,則的值為()A.-4 B.4C.-2 D.28.函數的最小值為()A. B.1C.2 D.e9.一道數學試題,甲、乙兩位同學獨立完成,設命題是“甲同學解出試題”,命題是“乙同學解出試題”,則命題“至少一位同學解出試題”可表示為()A. B.C. D.10.設函數是定義在上的奇函數,且,當時,有恒成立.則不等式的解集為()A. B.C. D.11.已知,表示兩條不同的直線,表示平面.下列說法正確的是A.若,,則B.若,,則C.若,,則D.若,,則12.已知,則下列說法中一定正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為F,A為拋物線C上一點.以F為圓心,FA為半徑的圓交拋物線C的準線于B,D兩點,A,F,B三點共線,且,則______14.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.15.已知點P是雙曲線右支上的一點,且以點P及焦點為定點的三角形的面積為4,則點P的坐標是_____________16.螺旋線這個名詞來源于希臘文,它的原意是“旋卷”或“纏卷”,平面螺旋便是以一個固定點開始向外逐圈旋繞而形成的曲線,如下圖(1)所示.如圖(2)所示陰影部分也是一個美麗的螺旋線型的圖案,它的畫法是這樣的:正方形ABCD的邊長為4,取正方形ABCD各邊的四等分點E,F,G,H,作第2個正方形EFGH,然后再取正方形EFGH各邊的四等分點M,N,P,Q,作第3個正方形MNPQ,依此方法一直繼續下去,就可以得到陰影部分的圖案.如圖(2)陰影部分,設直角三角形AEH面積為,直角三角形EMQ面積為,后續各直角三角形面積依次為,…,,若數列的前n項和恒成立,則實數的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設命題方程表示中心在原點,焦點在坐標軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數的取值范圍.18.(12分)已知橢圓的離心率為,且經過點.(1)求橢圓的標準方程;(2)已知,經過點的直線與橢圓交于、兩點,若原點到直線的距離為,且,求直線的方程.19.(12分)在直角坐標系中,曲線C的參數方程為,(為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.(1)寫出曲線C的極坐標方程;(2)已知直線與曲線C相交于A,B兩點,求.20.(12分)某地區2021年清明節前后3天每天下雨的概率為50%,通過模擬實驗的方法來計算該地區這3天中恰好有2天下雨的概率.用隨機數x(,且)表示是否下雨:當時表示該地區下雨,當時,表示該地區不下雨,從隨機數表中隨機取得20組數如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根據上述數表求出該地區清明節前后3天中恰好有2天下雨的概率;(2)從2012年到2020年該地區清明節當天降雨量(單位:)如表:(其中降雨量為0表示沒有下雨).時間2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221經研究表明:從2012年至2021年,該地區清明節有降雨的年份的降雨量y與年份t成線性回歸,求回歸直線方程,并計算如果該地區2021年()清明節有降雨的話,降雨量為多少?(精確到0.01)參考公式:,參考數據:,,,21.(12分)在等差數列中,記為數列的前項和,已知:.(1)求數列的通項公式;(2)求使成立的的值.22.(10分)已知橢圓的上頂點在直線上,點在橢圓上.(1)求橢圓C的方程;(2)點P,Q在橢圓C上,且,,點G為垂足,是否存在定圓恒經過A,G兩點,若存在,求出圓的方程;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用三角形正弦定理結合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A2、C【解析】求出樣本中心點的坐標,代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數據可得,,將樣本中心點的坐標代入回歸直線方程可得,解得,所以,回歸直線方程為,故當時,.故選:C.3、C【解析】化簡復數得,由其為純虛數求參數a,進而求的模即可.【詳解】由純虛數,∴,解得:,則,故選:C4、A【解析】根據三視圖可知,該幾何體是由一個底面半徑為10,高為20的圓錐和寬度為20的圓環組成的幾何體,則所求面積積為圓錐的側面積與圓環的面積之和【詳解】根據三視圖可知,該幾何體是由一個底面半徑為10,高為20的圓錐和寬度為20的圓環組成的幾何體,所以該斗笠被雨水打濕的面積為,故選:A5、C【解析】由韋達定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進而可判斷兩直線的位置關系【詳解】設方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C6、C【解析】根據圖象可得的符號,從而可得的單調區間,再對選項進行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當時,,當時,,當時,,當時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負數,故C正確,D錯誤.故選:C.7、B【解析】根據,利用等比數列的通項公式求解.【詳解】因為,所以,則,解得,所以.故選:B8、B【解析】先化簡為,然后通過換元,再研究外層函數單調性,進而求得的最小值【詳解】化簡可得:令,故的最小值即為的最小值,是關于的單調遞增函數,易知對求導可得:當時,單調遞減;當時,單調遞增則有:故選:B9、D【解析】根據“或命題”的定義即可求得答案.【詳解】“至少一位同學解出試題”的意思是“甲同學解出試題,或乙同學解出試題”.故選:D.10、B【解析】根據當時,可知在上單調遞減,結合可確定在上的解集;根據奇偶性可確定在上的解集;由此可確定結果.【詳解】,當時,,在上單調遞減,,,在上的解集為,即在上的解集為;又為上的奇函數,,為上的偶函數,在上的解集為,即在上的解集為;當時,,不合題意;綜上所述:的解集為.故選:.【點睛】本題考查利用函數的單調性和奇偶性求解函數不等式的問題,關鍵是能夠通過構造函數的方式,確定所構造函數的單調性和奇偶性,進而根據零點確定不等式的解集.11、B【解析】A.運用線面平行的性質,結合線線的位置關系,即可判斷;B.運用線面垂直的性質,即可判斷;C.運用線面垂直的性質,結合線線垂直和線面平行的位置即可判斷;D.運用線面平行的性質和線面垂直的判定,即可判斷【詳解】A.若m∥α,n∥α,則m,n相交或平行或異面,故A錯;B.若m⊥α,,由線面垂直的性質定理可知,故B正確;C.若m⊥α,m⊥n,則n∥α或n?α,故C錯;D.若m∥α,m⊥n,則n∥α或n?α或n⊥α,故D錯故選B【點睛】本題考查空間直線與平面的位置關系,考查直線與平面的平行、垂直的判斷與性質,記熟定理是解題的關鍵,注意觀察空間的直線與平面的模型12、B【解析】AD選項,舉出反例即可;BC選項,利用不等式的基本性質進行判斷.【詳解】當,時,滿足,此時,故A錯誤;因,所以,,,B正確;因為,所以,,故,C錯誤;當,時,滿足,,,所以,D錯誤.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得拋物線的焦點和準線方程,由,,三點共線,推得,由三角形的中位線性質可得到準線的距離,可得的值【詳解】拋物線的焦點為,,準線方程為,因為,,三點共線,可得為圓的直徑,如圖示:設準線交x軸于E,所以,則,由拋物線的定義可得,又是的中點,所以到準線的距離為,故答案為:214、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點睛】本題考查利用余弦定理解三角形,考查計算能力,屬于中等題.15、【解析】由題可得P到x軸的距離為1,把代入,得,可得P點坐標【詳解】設,由題意知,所以,則,由題意可得,把代入,得,所以P點坐標為故答案為:16、或【解析】先求正方形邊長的規律,再求三角形面積的規律,從而就可以求和了,再解不等式即可求解.【詳解】由題意,由外到內依次各正方形的邊長分別為,則,,……,,于是數列是以4為首項,為公比的等比數列,則.由題意可得:,即……,于是.,故解得或.故答案為:或三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】求出當命題、分別為真命題時實數的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應的實數的取值范圍,綜合可得結果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因為“”為假命題,“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時.綜上所述,實數的范圍為.18、(1);(2).【解析】(1)由已知條件可得出關于、、的方程組,求出這三個量的值,由此可得出橢圓的標準方程;(2)分析可知直線的斜率存在且不為零,設直線的方程為,由點到直線的距離公式可得出,設點、,將直線的方程與橢圓的方程聯立,列出韋達定理,由可得出,代入韋達定理求出、的值,由此可得出直線的方程.【詳解】(1)設橢圓的焦距為,則,解得,因此,橢圓的標準方程為;(2)若直線斜率不存在,則直線過原點,不合乎題意.所以,直線的斜率存在,設斜率為,設直線方程為,設、,原點到直線的距離為,,即①.聯立直線與橢圓方程可得,則,則,由韋達定理可得,.,則為線段的中點,所以,,,得,,所以,,整理可得,解得,即,,因此,直線的方程為或.【點睛】方法點睛:利用韋達定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設直線方程,設交點坐標為、;(2)聯立直線與圓錐曲線的方程,得到關于(或)的一元二次方程,必要時計算;(3)列出韋達定理;(4)將所求問題或題中的關系轉化為、的形式;(5)代入韋達定理求解.19、(1);(2).【解析】(1)首先將圓的參數方程華為普通方程,再轉化為極坐標方程即可.(2)首先聯立得到,再求的長度即可.【詳解】(1)將曲線C的參數方程,(為參數)化為普通方程,得,極坐標方程為.(2)聯立方程組,消去得,設點A,B對應的極徑分別為,,則,,所以.20、(1),;(2);該地區2020年清明節有降雨的話,降雨量為20.2mm【解析】(1)利用概率模擬求概率;(2)套用公式求回歸直線方程即可.【詳解】解:(1)由題意可知,,解得,即表示下雨,表示不下雨,所給的20組數據中714,740,491,272,073,445,435,027,共8組表示3天中恰有兩天下

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論