2023-2024學年安徽省阜陽市潁上縣第二中學等三校高二上數學期末學業水平測試試題含解析_第1頁
2023-2024學年安徽省阜陽市潁上縣第二中學等三校高二上數學期末學業水平測試試題含解析_第2頁
2023-2024學年安徽省阜陽市潁上縣第二中學等三校高二上數學期末學業水平測試試題含解析_第3頁
2023-2024學年安徽省阜陽市潁上縣第二中學等三校高二上數學期末學業水平測試試題含解析_第4頁
2023-2024學年安徽省阜陽市潁上縣第二中學等三校高二上數學期末學業水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年安徽省阜陽市潁上縣第二中學等三校高二上數學期末學業水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與直線,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.43.若橢圓對稱軸是坐標軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對4.若數列為等差數列,數列為等比數列,則下列不等式一定成立的是()A. B.C. D.5.數列中,,,則()A.32 B.62C.63 D.646.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.7.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()A.2 B.6C.4 D.128.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.9.過點且平行于直線的直線方程為()A. B.C. D.10.在二面角的棱上有兩個點、,線段、分別在這個二面角的兩個面內,并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.11.《周髀算經》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個節氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸12.若數列對任意滿足,下面選項中關于數列的說法正確的是()A.一定是等差數列B.一定是等比數列C.可以既是等差數列又是等比數列D.可以既不是等差數列又不是等比數列二、填空題:本題共4小題,每小題5分,共20分。13.某工廠年前加緊手套生產,設該工廠連續5天生產的手套數依次為,,,,(單位:萬只),若這組數據,,,,的方差為4,且,,,,的平均數為8,則該工廠這5天平均每天生產手套______萬只14.平行六面體中,底面是邊長為1的正方形,,則對角線的長度為___.15.已知向量與是平面的兩個法向量,則__________16.某公司青年、中年、老年員工的人數之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數的和等于37;條件②:第3項與第7項的二項式系數相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數最大的項;(2)設,求的值;(3)求的展開式中的系數.18.(12分)已知橢圓:經過點,設右焦點F,橢圓上存在點Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過點的直線與橢圓交于D,G兩點.是否存在直線使得以DG為直徑的圓過點E(-1,0)?若存在,求出直線的方程,若不存在,說明理由.19.(12分)已知圓C過兩點,,且圓心C在直線上(1)求圓C的方程;(2)過點作圓C的切線,求切線方程20.(12分)已知的離心率為,短軸長為2,F為右焦點(1)求橢圓的方程;(2)在x軸上是否存在一點M,使得過F的任意一條直線l與橢圓的兩個交點A,B,恒有,若存在求出M的坐標,若不存在,說明理由21.(12分)在中,是的中點,,現將該平行四邊形沿對角線折成直二面角,如圖:(1)求證:;(2)求二面角的余弦值.22.(10分)已知分別是橢圓的左、右焦點,點是橢圓上的一點,且的面積為1.(1)求橢圓的短軸長;(2)過原點的直線與橢圓交于兩點,點是橢圓上的一點,若為等邊三角形,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據直線與直線的垂直,列方程,求出,再判斷充分性和必要性即可.【詳解】解:若,則,解得或,即或,所以”是“充分不必要條件.故選:A.【點睛】本題考查直線一般式中直線與直線垂直的系數關系,考查充分性和必要性的判斷,是基礎題.2、C【解析】直接運用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C3、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標軸,則該橢圓的方程為或.故選:C.4、D【解析】對選項A,令即可檢驗;對選項B,令即可檢驗;對選項C,令即可檢驗;對選項D,設出等差數列的首項和公比,然后作差即可.【詳解】若,則可得:,故選項A錯誤;若,則可得:,故選項B錯誤;若,則可得:,故選項C錯誤;不妨設的首項為,公差為,則有:則有:,故選項D正確故選:D5、C【解析】把化成,故可得為等比數列,從而得到的值.【詳解】數列中,,故,因為,故,故,所以,所以為等比數列,公比為,首項為.所以即,故,故選C.【點睛】給定數列的遞推關系,我們常需要對其做變形構建新數列(新數列的通項容易求得),常見的遞推關系和變形方法如下:(1),取倒數變形為;(2),變形為,也可以變形為;6、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D7、C【解析】根據題設條件求出橢圓的長半軸,再借助橢圓定義即可作答.【詳解】由橢圓+y2=1知,該橢圓的長半軸,A是橢圓一個焦點,設另一焦點為,而點在BC邊上,點B,C又在橢圓上,由橢圓定義得,所以的周長故選:C8、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉化為點到準線的距離,即可求出線段中點的橫坐標,即得到答案.【詳解】由已知可得拋物線的準線方程為,設點的坐標分別為和,由拋物線的定義得,即,線段中點的橫坐標為,故線段的中點到軸的距離是.故選:.9、A【解析】設直線的方程為,代入點的坐標即得解.【詳解】解:設直線的方程為,把點坐標代入直線方程得.所以所求的直線方程為.故選:A10、C【解析】設這個二面角的度數為,由題意得,從而得到,由此能求出結果.【詳解】設這個二面角的度數為,由題意得,,,解得,∴,∴這個二面角的度數為,故選:C.【點睛】本題考查利用向量的幾何運算以及數量積研究面面角.11、D【解析】結合等差數列知識求得正確答案.【詳解】設冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D12、D【解析】由已知可得或,結合等差數列和等比數列的定義,可得答案【詳解】由,得或,即或,若,則數列是等差數列,則B錯誤;若,當時,數列是等差數列,當時,數列是等比數列,則A錯誤數列是等差數列,也可以是等比數列;由,不能得到數列為非0常數列,則不可以既是等差又是等比數列,則C錯誤;可以既不是等差又不是等比數列,如1,3,5,10,20,,故D正確;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】結合方差、平均數的公式列方程,化簡求得正確答案.【詳解】依題意設,則,.故答案為:14、2【解析】利用,兩邊平方后,利用向量數量積計算公式,計算得.【詳解】對兩邊平方并化簡得,故.【點睛】本小題主要考查空間向量的加法和減法運算,考查空間向量數量積的表示,屬于中檔題.15、【解析】由且為非零向量可直接構造方程求得,進而得到結果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.16、200【解析】先根據分層抽樣的方法計算出該單位青年職工應抽取的人數,進而算出青年職工的總人數.【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽取(人).因為每人被抽中的概率是0.2,所以青年職工共有(人).故答案:200.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展開式中二項式系數最大的項為選擇②,因為,解得,所以展開式中二項式系數最大的項為【小問2詳解】令,則,令,則,所以,【小問3詳解】因為所以的展開式中含的項為:所以展開式中的系數為560.18、(1);(2)存在,或.【解析】(1)根據題意,列出的方程組,求得,則橢圓方程得解;(2)對直線的斜率進行討論,當斜率存在時,設出直線方程,聯立橢圓方程,利用韋達定理,轉化題意為,求解即可.小問1詳解】由題意,得,設,將代入橢圓方程,得,所以,解得,所以橢圓的方程為.【小問2詳解】當斜率不存在時,即時,,為橢圓短軸兩端點,則以為直徑的圓為,恒過點,滿足題意;當斜率存在時,設,,,由得:,,解得:,,若以為直徑的圓過點,則,即,又,,,解得:,滿足,即,此時直線的方程為綜上,存在直線使得以為直徑的圓過點,的方程為或19、(1).(或標準形式)(2)或【解析】(1)根據題意,求出中垂線方程,與直線聯立,可得圓心的坐標,求出圓的半徑,即可得答案;(2)分切線的斜率存在與不存在兩種情況討論,求出切線的方程,綜合可得答案【小問1詳解】解:根據題意,因為圓過兩點,,設的中點為,則,因為,所以的中垂線方程為,即又因為圓心在直線上,聯立,解得,所以圓心,半徑,故圓的方程為,【小問2詳解】解:當過點P的切線的斜率不存在時,此時直線與圓C相切當過點P的切線斜率k存在時,設切線方程為即(*)由圓心C到切線的距離,可得將代入(*),得切線方程為綜上,所求切線方程為或20、(1);(2)存在點M滿足條件,點M的坐標為.【解析】(1)根據給定條件直接計算出即可求解作答.(2)假定存在點,當直線l與x軸不重合時,設出l的方程,與橢圓C的方程聯立,借助、斜率互為相反數計算得解,再驗證直線l與x軸重合的情況即可作答.【小問1詳解】依題意,,而離心率,即,解得,所以橢圓C的方程為:.【小問2詳解】由(1)知,,假定存在點滿足條件,當直線與x軸不重合時,設l的方程為:,由消去x并整理得:,設,則有,因,則直線、斜率互為相反數,于是得:,整理得,即,則有,即,而m為任意實數,則,當直線l與x軸重合時,點A,B為橢圓長軸的兩個端點,點也滿足,所以存在點M滿足條件,點M的坐標為.【點睛】思路點睛:解答直線與橢圓相交的問題,常把直線與橢圓的方程聯立,消去x(或y)建立一元二次方程,然后借助根與系數的關系,并結合題設條件建立有關參變量的等量關系.21、(1)證明見解析(2)【解析】(1)先求出BD,通過勾股定理的逆定理得,再由面面垂直的性質得線面垂直,從而得線線垂直;(2)作出二面角,然后再解直角三形即可.【小問1詳解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB?平面ABD,∴AB⊥平面BCD.又CD?平面BCD,∴AB⊥CD.【小問2詳解】因為點是的中點,在中,由(1)易知,.過點作垂直的延長線于,再連接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.22、(1)2(2)【解析】(1)根據題意表示出的面積,即可求得結果;(2)分類討論直線斜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論