




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
13-BasicImageOperations
YongXu(許勇)
SchoolofComputerScience&Engineering2ContentHistogramsPointoperators(點運算)Imagenoise(圖像噪聲)Groupoperations(群運算)Individualbrightnesslevels’(亮度級)occupanciesTheimagecontrastTherangeofbrightnesslevels
Howtomaketheimageclearer?3HistogramsAdvantageSimple,quick,somewhateffectiveDisadvantageCannotdescribespatialinformationCannotdescribetheimagedetails4HistogramsTwocompletelydifferentimagewhichhavesimilarhistograms5PyramidHistogram6PyramidHistogram7DistinguishableSimilarDifferentDifferentInvariant?UseafunctionThepointatthesameplaceintheoriginalimageMathematicalfunctionBasicpointoperations(基本點運算)BecomputedfromtheimageitselfHistogramnormalization(直方圖正規化)Histogramequalization(直方圖均衡化)Histogramspecification(直方圖匹配)Thresholding(閾值處理)9PointOperatorsAlinearbrightnessrelation
k:gain(增益),l:level(偏移量)
10BasicPointOperationsk=1.2l=10Originalimage11BasicPointOperationsk,l?12BasicPointOperationsk=1,l=0k=-1,l=255k=1,l=35k=1.1,l=-1013BasicPointOperationsThesawtoothoperator(鋸齒算子)AnalternativeformofthelinearoperatorEmphasizelocalcontrastchange14BasicPointOperationsy=xmod50y=xmod100y=xmod90y=xmod80y=xmod70y=xmod6015TheSawtoothOperatory=(xmod50)*255/49y=(xmod60)*255/59y=(xmod70)*255/69y=(xmod80)*255/79y=(xmod90)*255/89y=(xmod100)*255/9916TheSawtoothOperatorOriginalimagemod50mod60mod7017TheSawtoothOperatorOriginalimagemod80mod90mod100ArithmeticfunctionsLogarithm
Darker,asmallrangeofbrightnesslevels18BasicpointoperationsOriginalpictureLogarithm25log(50f(x,y))log(50f(x,y))log(f(x,y))LogarithmLogarithm19BasicPointOperationsExponent30exp(f(x,y)/100)OriginalpictureArithmeticfunctionsExponentBrighter,greatercontrastexp(f(x,y)/100)exp(f(x,y))ExponentExponentStretchandshifttheoriginalhistogramCoverallthe256availablelevels20HistogramNormalizationOriginalimageNormalizedimage21HistogramNormalizationOriginalimageNormalizationimageAnonlinearprocessandirreversibleProduceapicturewithaflatterhistogramAlllevelsareequiprobableThemappingfunctionContinuous22HistogramEqualization
ThemappingfunctionDiscrete23HistogramEqualization1399821373360646820529260
h0312243441516471829300.1210.0820.1630.1640.0450.0460.1670.0480.0890.12
f
p(i)00.1210.2020.3630.5240.5650.6060.7670.8080.8891.00
s(i)OriginalimageHistogram2400.1210.2020.3630.5240.5650.6060.7670.8080.8891.001399821373360646820529260511332552552249251133204133133194019414319422492015392255921940
f
gHistogramEqualization
s(i)
255s(i)round
numbers25HistogramEqualizationOriginalimageEqualizedimage26HistogramEqualizationOriginalimageEqualizationimage27HistogramEqualization28HistogramEqualizationNormalizationEqualization29HistogramEqualizationOriginalimageNormalization
Equalization30HistogramEqualizationOriginalimageNormalization
Equalization31HistogramEqualizationOriginalimageNormalization
Equalization32HistogramEqualizationOriginalimageNormalization
Equalization33HistogramEqualizationOriginalimageNormalization
Equalization34HistogramEqualizationOriginalimageNormalization
EqualizationForthecolorimageDohistogramnormalizationineachchannelDohistogramequalizationineachchannel35HistogramEqualizationChannel1Channel2Channel3OriginalimageNormalization
EqualizationHistogramnormalizationAlinearprocessandreversibleHistogramequalizationAnonlinearprocessandirreversible36HistogramEqualizationTheconvertedimagehasaparticularhistogram.ContinuousDiscrete37HistogramSpecificationOriginal->equalizeDesired->equalizeFinalOriginal->equalizeDesired->equalizeFinal38HistogramSpecificationDesiredequalizeequalizegg-1OriginalFinalminimal39HistogramSpecificationxipx(i)f00.190.1910.250.4420.210.6530.160.8140.080.8950.060.9560.030.9870.021.00gpz(i)zi0.000.0000.000.0010.000.0020.150.1530.350.2040.650.3050.850.2061.000.157zipz(i)00.0010.0020.0030.1940.2550.2160.2470.11Selectspixels
AparticularvalueAspecifiedrangeUniformthresholding(均一閾值處理)Requireknowledgeofthegraylevel
40ThresholdingOriginalimageT=160OriginalimageT=125Adaptivethresholding(自適應閾值處理)Otsu’smethodMaxthefollowingvaluewhere41ThresholdingContrast42ThresholdingOriginalimageT=160OstuT=127OstuT=117T=125OriginalimageRandomvariationofbrightnessorcolorinformationElectronicnoiseAddspuriousandextraneousinformationProduceThesensor
Circuitryofa
scanner
or
digitalcamera…TypesGaussiannoise(高斯噪聲)Saltandpeppernoise(椒鹽噪聲)43ImageNoisePrincipalsourcesSensornoisePoorilluminationHightemperatureElectroniccircuitnoiseNoiseIndependentateachpixelIndependentofthesignalintensityGaussian-distributed44GaussianNoiseg(x,y,i)=f(x,y,i)+noisef(x,y,i)eachpixelineachchanneloftheoriginalimagex,y:location,i:channelg(x,y,i):eachpixelineachchanneloftheGaussiannoiseimagex,y:location,i:channel
Noise
obeys
a
Gaussian
distributionG(μ,σ)45GaussianNoiseImageGaussiannoiseOriginalimageG(0,1)PrincipalsourcesAnalog-to-digitalconvertererrorsBiterrorsintransmissionNoiseSaltnoiseNoisepoints’valuesare255.PeppernoiseNoisepoints’valuesare0.RandomThenoisedensityisaconstant.46SaltandPepperNoiseIneverychanneloftheoriginalimage
Randomchangesomepixels’values(set0or255)Letthenoisedensityisaconstant47SaltandPepperNoiseImageSaltandpeppernoiseOriginalimageNoisedensity=0.05Useapixel’sneighborhoodTemplateconvolution(模板卷積)Averagingoperator(平均算子)Gaussianaveraging(高斯平均)Medianfilter(中值濾波)Modefilter(眾數濾波)ComparisonofstatisticaloperatorsMathematicalmorphology(數學形態學)48GroupOperationsTemplate--asetofweightingcoefficientsPlacethetemplateatthepointofinterest
Theconvolutionnotation49TemplateConvolutionThetemplateweightingfunctionsareunityAdvantageReducenoiseDisadvantageCauseblurringReducedetail50AveragingOperatorOndifferenttemplatesizeTemplatesareusuallyofodddimension.LargeraveragingoperatorsSmooththeimagemoreRemovemoredetail
51AveragingOperator52AveragingOperator3×35×57×7GaussiannoiseSaltandpeppernoiseOriginalimage53AveragingOperatorOriginalimage3×35×57×7ThresholdingT=10054GaussianAveragingOperatorCalculatecoefficients
Templateforthe5×5Gaussianaveragingoperator(σ=1.0).55GaussianAveragingOperator3×35×57×7GaussiannoiseSaltandpeppernoiseOriginalimageTheGaussianfiltervs.directaveragingMorefeaturesareretainedwhilethenoiseisremoved.56GaussianAveragingOperatorAveragingoperatorGaussianaveragingoperator57GaussianAveragingOperator3×35×57×7GaussiannoiseOriginalimageAveragingoperatorGaussianaveragingoperator58GaussianAveragingOperator3×35×57×7OriginalimageAveragingoperatorGaussianaveragingoperatorSaltandpeppernoise
Alternativetemplateshapes59MedianFilterCrossHorizontallineVerticallineAbilitiesRemovesaltandpeppernoiseRetainedges60MedianFilter61MedianFilterGaussiannoiseSaltandpeppernoiseOriginalimage3×35×57×7Findthebackground62MedianFilter--Application
Averaging(g)
select
middle
value
ofimage1~image6Usethemostfrequentlyoccurringpixelvalue63ModeFilter01221481773150115812191Pixels’frequency77487715877219221500774877777721922150001221481773150115812191Theorderofthemean,themedian,andthemode64ModeFilter774851158170219221500Whatshouldwedo?Thetruncatedmedianfilter(截斷中值濾波)IfthemedianislessthanthemeanIfthemedianisgreaterthanthemean65TruncatedMedianFilters=median–min,upper=median+supperminmedianmeanmaxupperminmedianmeanmaxtruncateupperminmedianmeanminmedianmeanmaxupperminmedianmeanmodeThemedianoftheremainingdistributionapproachesthemode.s=max–median,lower=median-smaxmedianmeanminmaxlowermedianmeanminmaxlowermedianmeanmintruncatemaxlowermedianmeanmaxlowermedianmeanmodeThemedianoftheremainingdistributionapproachesthemode.CharacteristicsRemovesaltandpeppernoiseRetainfeatureboundariesExperience66TruncatedMedianFilter67TruncatedMedianFilterGaussiannoiseSaltandpeppernoiseOriginalimage3×35×57×7AveragingoperatorRemovemuchnoisebutblurfeatureboundariesG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025BEC指導合同英語特色介紹:掌握合同條款的秘訣
- 2025智能軟件產品研發與技術支持合同
- 《質子激發分析》課件
- 2025勞動合同書勞務合同范本
- 8.1《薪火相傳的傳統美德》 課件 2024-2025學年統編版道德與法治七年級下冊
- 課件:人格尊嚴的法律守護者-教學資源與活動設計
- 《腸道病毒輪狀病毒》課件
- 優等期刊論文獎金申請作業指導課件
- 《綠色生活倡導》課件
- 《我是稱職小交警》(教案)-2024-2025學年三年級上冊勞動人民版
- 華北理工選礦學課件01破碎與磨礦
- 2023年美國AHA心肺復蘇指南
- 激光雷達技術原理第一章
- 安全生產風險管控信息臺賬(清單)
- 房源和客源的開發
- DL-T 2209-2021 架空輸電線路雷電防護導則
- DL-T 2087-2020 火力發電廠熱電聯產供熱技術導則
- GB/T 38615-2020超聲波物位計通用技術條件
- GB/T 20840.103-2020互感器第103部分:互感器在電能質量測量中的應用
- 商業銀行經營管理學商業銀行資產負債管理課件
- 智慧環衛大數據信息化云平臺建設和運營綜合解決方案
評論
0/150
提交評論