




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
APOS:AConstructivistTheoryofLearning
inUndergraduateMathematicsEducationResearch
EdDubinsky,GeorgiaStateUniversity,USA
and
MichaelA.McDonald,OccidentalCollege,USA
Theworkreportedinthispaperisbasedontheprinciplethatresearchinmathematicseducation
isstrengthenedinseveralwayswhenbasedonatheoreticalperspective.Developmentofatheoryor
modelinmathematicseducationshouldbe,inourview,partofanattempttounderstandhow
mathematicscanbelearnedandwhataneducationalprogramcandotohelpinthislearning.Wedo
notthinkthatatheoryoflearningisastatementoftruthandalthoughitmayormaynotbean
approximationtowhatisreallyhappeningwhenanindividualtriestolearnoneoranotherconceptin
mathematics,thisisnotourfocus.Ratherweconcentrateonhowatheoryoflearningmathematics
canhelpusunderstandthelearningprocessbyprovidingexplanationsofphenomenathatwecan
observeinstudentswhoaretryingtoconstructtheirunderstandingsofmathematicalconceptsandby
suggestingdirectionsforpedagogythatcanhelpinthislearningprocess.
Modelsandtheoriesinmathematicseducationcan
?supportprediction,
?haveexplanatorypower,
?beapplicabletoabroadrangeofphenomena,
?helporganizeone’sthinkingaboutcomplex,interrelatedphenomena,
?serveasatoolforanalyzingdata,and
?providealanguageforcommunicationofideasaboutlearningthatgobeyondsuperficial
descriptions.
Wewouldliketoofferthesesixfeatures,thefirstthreeofwhicharegivenbyAlanSchoenfeldin
“Towardatheoryofteaching-in-context,”IssuesinEducation,bothaswaysinwhichatheorycan
contributetoresearchandascriteriaforevaluatingatheory.
1
Inthispaper,wedescribeonesuchperspective,APOSTheory,inthecontextofundergraduate
mathematicseducation.Weexplaintheextenttowhichithastheabovecharacteristics,discussthe
rolethatthistheoryplaysinaresearchandcurriculumdevelopmentprogramandhowsuchaprogram
cancontributetothedevelopmentofthetheory,describebrieflyhowworkingwiththisparticular
theoryhasprovidedavehicleforbuildingacommunityofresearchersinundergraduatemathematics
education,andindicatetheuseofAPOSTheoryinspecificresearchstudies,bothbyresearcherswho
aredevelopingitaswellasothersnotconnectedwithitsdevelopment.Weprovide,inconnection
withthispaper,anannotatedbibliographyofresearchreportswhichinvolvethistheory.
APOSTheory
Thetheorywepresentbeginswiththehypothesisthatmathematicalknowledgeconsistsinan
individual’stendencytodealwithperceivedmathematicalproblemsituationsbyconstructingmental
actions,processes,andobjectsandorganizingtheminschemastomakesenseofthesituationsand
solvetheproblems.InreferencetothesementalconstructionswecallitAPOSTheory.Theideas
arisefromourattemptstoextendtothelevelofcollegiatemathematicslearningtheworkofJ.Piaget
onreflectiveabstractioninchildren’slearning.APOSTheoryisdiscussedindetailinAsiala,et.al.
(1996).Wewillarguethatthistheoreticalperspectivepossesses,atleasttosomeextent,the
characteristicslistedaboveand,moreover,hasbeenveryusefulinattemptingtounderstandstudents’
learningofabroadrangeoftopicsincalculus,abstractalgebra,statistics,discretemathematics,and
otherareasofundergraduatemathematics.Hereisabriefsummaryoftheessentialcomponentsofthe
theory.
Anactionisatransformationofobjectsperceivedbytheindividualasessentiallyexternaland
asrequiring,eitherexplicitlyorfrommemory,step-by-stepinstructionsonhowtoperformthe
operation.Forexample,anindividualwithanactionconceptionofleftcosetwouldberestrictedto
workingwithaconcretegroupsuchasZ20andheorshecouldconstructsubgroups,suchas
H={0,4,8,12,16}byformingthemultiplesof4.Thentheindividualcouldwritetheleftcosetof5as
theset5+H={1,5,9,13,17}consistingoftheelementsofZ20whichhaveremaindersof1whendivided
by4.
2
Whenanactionisrepeatedandtheindividualreflectsuponit,heorshecanmakeaninternal
mentalconstructioncalledaprocesswhichtheindividualcanthinkofasperformingthesamekindof
action,butnolongerwiththeneedofexternalstimuli.Anindividualcanthinkofperforminga
processwithoutactuallydoingit,andthereforecanthinkaboutreversingitandcomposingitwith
otherprocesses.Anindividualcannotusetheactionconceptionofleftcosetdescribedabovevery
effectivelyforgroupssuchasS4,thegroupofpermutationsoffourobjectsandthesubgroupH
correspondingtothe8rigidmotionsofasquare,andnotatallforgroupsSnforlargevaluesofn.In
suchcases,theindividualmustthinkoftheleftcosetofapermutationpasthesetofallproductsph,
wherehisanelementofH.Thinkingaboutformingthissetisaprocessconceptionofcoset.
Anobjectisconstructedfromaprocesswhentheindividualbecomesawareoftheprocessasa
totalityandrealizesthattransformationscanactonit.Forexample,anindividualunderstandscosets
asobjectswhenheorshecanthinkaboutthenumberofcosetsofaparticularsubgroup,canimagine
comparingtwocosetsforequalityorfortheircardinalities,orcanapplyabinaryoperationtothesetof
allcosetsofasubgroup.
Finally,aschemaforacertainmathematicalconceptisanindividual’scollectionofactions,
processes,objects,andotherschemaswhicharelinkedbysomegeneralprinciplestoforma
frameworkintheindividual’smindthatmaybebroughttobearuponaproblemsituationinvolving
thatconcept.Thisframeworkmustbecoherentinthesensethatitgives,explicitlyorimplicitly,
meansofdeterminingwhichphenomenaareinthescopeoftheschemaandwhicharenot.Because
thistheoryconsidersthatallmathematicalentitiescanberepresentedintermsofactions,processes,
objects,andschemas,theideaofschemaisverysimilartotheconceptimagewhichTallandVinner
introducein“Conceptimageandconceptdefinitioninmathematicswithparticularreferencetolimits
andcontinuity,”EducationalStudiesinMathematics,12,151-169(1981).Ourrequirementof
coherence,however,distinguishesthetwonotions.
Thefourcomponents,action,process,object,andschemahavebeenpresentedhereina
hierarchical,orderedlist.Thisisausefulwayoftalkingabouttheseconstructionsand,insomesense,
eachconceptioninthelistmustbeconstructedbeforethenextstepispossible.Inreality,however,
whenanindividualisdevelopingherorhisunderstandingofaconcept,theconstructionsarenot
3
actuallymadeinsuchalinearmanner.Withanactionconceptionoffunction,forexample,an
individualmaybelimitedtothinkingaboutformulasinvolvingletterswhichcanbemanipulatedor
replacedbynumbersandwithwhichcalculationscanbedone.Wethinkofthisnotionasprecedinga
processconception,inwhichafunctionisthoughtofasaninput-outputmachine.Whatactually
happens,however,isthatanindividualwillbeginbybeingrestrictedtocertainspecifickindsof
formulas,reflectoncalculationsandstartthinkingaboutaprocess,gobacktoanactioninterpretation,
perhapswithmoresophisticatedformulas,furtherdevelopaprocessconceptionandsoon.Inother
words,theconstructionofthesevariousconceptionsofaparticularmathematicalideaismoreofa
dialecticthanalinearsequence.
APOSTheorycanbeuseddirectlyintheanalysisofdatabyaresearcher.Inveryfinegrained
analyses,theresearchercancomparethesuccessorfailureofstudentsonamathematicaltaskwiththe
specificmentalconstructionstheymayormaynothavemade.Ifthereappeartwostudentswhoagree
intheirperformanceuptoaveryspecificmathematicalpointandthenonestudentcantakeafurther
stepwhiletheothercannot,theresearchertriestoexplainthedifferencebypointingtomental
constructionsofactions,processes,objectsand/orschemasthattheformerstudentappearstohave
madebuttheotherhasnot.Thetheorythenmakestestablepredictionsthatifaparticularcollectionof
actions,processes,objectsandschemasareconstructedinacertainmannerbyastudent,thenthis
individualwilllikelybesuccessfulusingcertainmathematicalconceptsandincertainproblem
situations.Detaileddescriptions,referredtoasgeneticdecompositions,ofschemasintermsofthese
mentalconstructionsareawayoforganizinghypothesesabouthowlearningmathematicalconcepts
cantakeplace.Thesedescriptionsalsoprovidealanguagefortalkingaboutsuchhypotheses.
DevelopmentofAPOSTheory
APOSTheoryaroseoutofanattempttounderstandthemechanismofreflectiveabstraction,
introducedbyPiagettodescribethedevelopmentoflogicalthinkinginchildren,andextendthisidea
tomoreadvancedmathematicalconcepts(Dubinsky,1991a).Thisworkhasbeencarriedonbya
smallgroupofresearcherscalledaResearchinUndergraduateMathematicsEducationCommunity
(RUMEC)whohavebeencollaboratingonspecificresearchprojectsusingAPOSTheorywithina
4
broaderresearchandcurriculumdevelopmentframework.Theframeworkconsistsofessentiallythree
components:atheoreticalanalysisofacertainmathematicalconcept,thedevelopmentand
implementationofinstructionaltreatments(usingseveralnon-standardpedagogicalstrategiessuchas
cooperativelearningandconstructingmathematicalconceptsonacomputer)basedonthistheoretical
analysis,andthecollectionandanalysisofdatatotestandrefineboththeinitialtheoreticalanalysis
andtheinstruction.Thiscycleisrepeatedasoftenasnecessarytounderstandtheepistemologyofthe
conceptandtoobtaineffectivepedagogicalstrategiesforhelpingstudentslearnit.
ThetheoreticalanalysisisbasedinitiallyonthegeneralAPOStheoryandtheresearcher’s
understandingofthemathematicalconceptinquestion.Afteroneormorerepetitionsofthecycleand
revisions,itisalsobasedonthefine-grainedanalysesdescribedaboveofdataobtainedfromstudents
whoaretryingtolearnorwhohavelearnedtheconcept.Thetheoreticalanalysisproposes,intheform
ofageneticdecomposition,asetofmentalconstructionsthatastudentmightmakeinorderto
understandthemathematicalconceptbeingstudied.Thus,inthecaseoftheconceptofcosetsas
describedabove,theanalysisproposesthatthestudentshouldworkwithveryexplicitexamplesto
constructanactionconceptionofcoset;thenheorshecaninteriorizetheseactionstoformprocesses
inwhicha(left)cosetgHofanelementgofagroupGisimaginedasbeingformedbytheprocessof
iteratingthroughtheelementshofH,formingtheproductsgh,andcollectingtheminasetcalledgH;
andfinally,asaresultofapplyingactionsandprocessestoexamplesofcosets,thestudent
encapsulatestheprocessofcosetformationtothinkofcosetsasobjects.Foramoredetailed
descriptionoftheapplicationofthisapproachtocosetsandrelatedconcepts,seeAsiala,Dubinsky,et.
al.(1997).
Pedagogyisthendesignedtohelpthestudentsmakethesementalconstructionsandrelatethem
tothemathematicalconceptofcoset.Inourwork,wehaveusedcooperativelearningand
implementingmathematicalconceptsonthecomputerinaprogramminglanguagewhichsupports
manymathematicalconstructsinasyntaxverysimilartostandardmathematicalnotation.Thus
students,workingingroups,willexpresssimpleexamplesofcosetsonthecomputerasfollows.
Z20:={0..19};
op:=|(x,y)->x+y(mod20)|;
5
H:={0,4,8,12,16};
5H:={1,5,9,13,17};
Tointeriorizetheactionsrepresentedbythiscomputercode,thestudentswillconstructmore
complicatedexamplesofcosets,suchasthoseappearingingroupsofsymmetries.
Sn:={[a,b,c,d]:a,b,c,din{1,2,3,4}|#{a,b,c,d}=4};
op:=|(p,q)->[p(q(i)):iin[1..4]]|;
H:={[1,2,3,4],[2,1,3,4],[3,4,1,2],[4,3,2,1]};
p:=[4,3,2,1];
pH:={p.opq:qinH};
Thelaststep,toencapsulatethisprocessconceptionofcosetstothinkofthemasobjects,canbevery
difficultformanystudents.Computeractivitiestohelpthemmayincludeformingthesetofallcosets
ofasubgroup,countingthem,andpickingtwocosetstocomparetheircardinalitiesandfindtheir
intersections.Theseactionsaredonewithcodesuchasthefollowing.
SnModH:={{p.opq:qinH}:pinSn};
#SnModH;
L:=arb(SnModH);K:=arb(SnModH);#L=#K;LinterK;
Finally,thestudentswriteacomputerprogramthatconvertsthebinaryoperationopfromanoperation
onelementsofthegrouptosubsetsofthegroup.Thisstructureallowsthemtoconstructabinary
operation(cosetproduct)onthesetofallcosetsofasubgroupandbegintoinvestigatequotient
groups.
Itisimportanttonotethatinthispedagogicalapproach,almostalloftheprogramsarewritten
bythestudents.Onehypothesisthattheresearchinvestigatesisthat,whethercompletelysuccessfulor
not,thetaskofwritingappropriatecodeleadsstudentstomakethementalconstructionsofactions,
processes,objects,andschemasproposedbythetheory.Thecomputerworkisaccompaniedby
classroomdiscussionsthatgivethestudentsanopportunitytoreflectonwhattheyhavedoneinthe
computerlabandrelatethemtomathematicalconceptsandtheirpropertiesandrelationships.Once
theconceptsareinplaceintheirminds,thestudentsareassigned(inclass,homeworkand
examinations)manystandardexercisesandproblemsrelatedtocosets.
6
Afterthestudentshavebeenthroughsuchaninstructionaltreatment,quantitativeand
qualitativeinstrumentsaredesignedtodeterminethementalconceptstheymayhaveconstructedand
themathematicstheymayhavelearned.Thetheoreticalanalysispointstoquestionsresearchersmay
askintheprocessofdataanalysisandtheresultsofthisdataanalysisindicatesboththeextentto
whichtheinstructionhasbeeneffectiveandpossiblerevisionsinthegeneticdecomposition.
Thiswayofdoingresearchandcurriculumdevelopmentsimultaneouslyemphasizesboth
theoryandapplicationstoteachingpractice.
Refiningthetheory
Asnotedabove,thetheoryhelpsusanalyzedataandourattempttousethetheorytoexplain
thedatacanleadtochangesinthetheory.Thesechangescanbeoftwokinds.Usually,thegenetic
decompositionintheoriginaltheoreticalanalysisisrevisedandrefinedasaresultofthedata.Inrare
cases,itmaybenecessarytoenhancetheoveralltheory.Animportantexampleofsucharevisionis
theincorporationofthetriadconceptofPiagetandGarcia(1989)whichisleadingtoabetter
understandingoftheconstructionofschemas.Thisenhancementtothetheorywasintroducedin
Clark,et.al.(1997)wheretheyreportonstudents’understandingofthechainrule,andisbeingfurther
elaborateduponinthreecurrentstudies:sequencesofnumbers(Mathews,et.al.,inpreparation);the
chainruleanditsrelationtocompositionoffunctions(Cottrill,1999);andtherelationsbetweenthe
graphofafunctionandpropertiesofitsfirstandsecondderivatives(Baker,et.al.,submitted).Ineach
ofthesestudies,theunderstandingofschemasasdescribedabovewasnotadequatetoprovidea
satisfactoryexplanationofthedataandtheintroductionofthetriadhelpedtoelaborateadeeper
understandingofschemasandprovidebetterexplanationsofthedata.
Thetriadmechanismconsistsinthreestages,referredtoasIntra,Inter,andTrans,inthe
developmentoftheconnectionsanindividualcanmakebetweenparticularconstructswithinthe
schema,aswellasthecoherenceoftheseconnections.TheIntrastageofschemadevelopmentis
characterizedbyafocusonindividualactions,processes,andobjectsinisolationfromothercognitive
itemsofasimilarnature.Forexample,inthefunctionconcept,anindividualattheIntralevel,would
tendtofocusonasinglefunctionandthevariousactivitiesthatheorshecouldperformwithit.The
7
Interstageischaracterizedbytheconstructionofrelationshipsandtransformationsamongthese
cognitiveentities.Atthisstage,anindividualmaybegintogroupitemstogetherandevencallthemby
thesamename.Inthecaseoffunctions,theindividualmightthinkaboutaddingfunctions,composing
them,etc.andevenbegintothinkofalloftheseindividualoperationsasinstancesofthesamesortof
activity:transformationoffunctions.Finally,attheTransstagetheindividualconstructsanimplicit
orexplicitunderlyingstructurethroughwhichtherelationshipsdevelopedintheInterstageare
understoodandwhichgivestheschemaacoherencebywhichtheindividualcandecidewhatisinthe
scopeoftheschemaandwhatisnot.Forexample,anindividualattheTransstageforthefunction
conceptcouldconstructvarioussystemsoftransformationsoffunctionssuchasringsoffunctions,
infinitedimensionalvectorspacesoffunctions,togetherwiththeoperationsincludedinsuch
mathematicalstructures.
ApplyingtheAPOSTheory
IncludedwiththispaperisanannotatedbibliographyofresearchrelatedtoAPOSTheory,its
ongoingdevelopmentanditsuseinspecificresearchstudies.Thisresearchconcernsmathematical
conceptssuchas:functions;varioustopicsinabstractalgebraincludingbinaryoperations,groups,
subgroups,cosets,normalityandquotientgroups;topicsindiscretemathematicssuchasmathematical
induction,permutations,symmetries,existentialanduniversalquantifiers;topicsincalculusincluding
limits,thechainrule,graphicalunderstandingofthederivativeandinfinitesequencesofnumbers;
topicsinstatisticssuchasmean,standarddeviationandthecentrallimittheorem;elementarynumber
theorytopicssuchasplacevalueinbasennumbers,divisibility,multiplesandconversionofnumbers
fromonebasetoanother;andfractions.Inmostofthiswork,thecontextforthestudiesarecollegiate
levelmathematicstopicsandundergraduatestudents.Inthecaseofthenumbertheorystudies,the
researchersexaminetheunderstandingofpre-collegemathematicsconceptsbycollegestudents
preparingtobeteachers.Finally,somestudiessuchasthatoffractions,showthattheAPOSTheory,
developedfor“advanced”mathematicalthinking,isalsoausefultoolinstudyingstudents’
understandingofmorebasicmathematicalconcepts.
8
Thetotalityofthisbodyofwork,muchofitdonebyRUMECmembersinvolvedindeveloping
thetheory,butanincreasingamountdonebyindividualresearchershavingnoconnectionwith
RUMECortheconstructionofthetheory,suggeststhatAPOSTheoryisatoolthatcanbeused
objectivelytoexplainstudentdifficultieswithabroadrangeofmathematicalconceptsandtosuggest
waysthatstudentscanlearntheseconcepts.APOSTheorycanpointustowardspedagogicalstrategies
thatleadtomarkedimprovementinstudentlearningofcomplexorabstractmathematicalconceptsand
students’useoftheseconceptstoprovetheorems,provideexamples,andsolveproblems.Data
supportingthisassertioncanbefoundinthepaperslistedinthebibliography.
UsingtheAPOSTheorytodevelopacommunityofresearchers
Atthisstageinthedevelopmentofresearchinundergraduatemathematicseducation,thereis
neitherasufficientlylargenumberofresearchersnorenoughgraduateschoolprogramstotrainnew
researchers.Otherapproaches,suchasexperiencedandnoviceresearchersworkingtogetherinteams
onspecificresearchproblems,needtobeemployedatleastonatemporarybasis.RUMECisone
exampleofaresearchcommunitythathasutilizedthisapproachintrainingnewresearchers.
Inaddition,aspecifictheorycanbeusedtounifyandfocustheworkofsuchgroups.The
initialgroupofresearchersinRUMEC,about30total,madeadecisiontofocustheirresearchwork
aroundtheAPOSTheory.Thiswasnotforthepurposeofestablishingdogmaorcreatingaclosed
researchcommunity,butratheritwasadecisionbasedoncurrentinterestsandneedsofthegroupof
researchers.
RUMECwasformedbyacombinationofestablishedandbeginningresearchersin
mathematicseducation.ThusoneimportantroleofRUMECwasthementoringofthesenew
researchers.HavingasingletheoreticalperspectiveinwhichtheworkofRUMECwasinitially
groundedwasbeneficialforthosejustbeginninginthisarea.AtthemeetingsofRUMEC,discussions
couldfocusnotonlyonthedetailsoftheindividualprojectsastheydeveloped,butalsoonthegeneral
theoryunderlyingallofthework.Inaddition,thegroup’sgeneralinterestinthistheoryandfrequent
discussionsaboutitinthecontextofactiveresearchprojectshasledtogrowthinthetheoryitself.
Thiswasthecase,forexample,inthedevelopmentofthetriadasatoolforunderstandingschemas.
9
Astheworkofthisgroupmatures,individualsarebeginningtouseothertheoreticalperspectivesand
othermodesofdoingresearch.
Summary
Inthispaper,wehavementionedsixwaysinwhichatheorycancontributetoresearchandwe
suggestthatthislistcanbeusedascriteriaforevaluatingatheory.Wehavedescribedhowonesuch
perspective,APOSTheoryisbeingused,inanorganizedway,bymembersofRUMECandothersto
conductresearchanddevelopcurriculum.Wehaveshownhowobservingstudents’successinmaking
ornotmakingmentalconstructionsproposedbythetheoryandusingsuchobservationstoanalyzedata
canorganizeourthinkingaboutlearningmathematicalconcepts,provideexplanationsofstudent
difficultiesandpredictsuccessorfailureinunderstandingamathematicalconcept.Thereisawide
rangeofmathematicalconceptstowhichAPOSTheorycanandhasbeenappliedandthistheoryis
usedasalanguageforcommunicationofideasaboutlearning.Wehavealsoseenhowthetheoryis
groundedindata,andhasbeenusedasavehicleforbuildingacommunityofresearchers.Yetitsuse
isnotrestrictedtomembersofthatcommunity.Finally,weprovideanannotatedbibliographywhich
presentsfurtherdetailsaboutthistheoryanditsuseinresearchinundergraduatemathematics
education.
10
AnAnnotatedBibliographyofworks
whichdeveloporutilizeAPOSTheory
I.Arnon.Teachingfractionsinelementaryschoolusingthesoftware“FractionsasEquivalence
Classes”oftheCentreforEducationalTechnology,TheNinthAnnualConferenceforComputersin
Education,TheIsraeliOrganizationforComputersinEducation,BookofAbstracts,Tel-Aviv,Israel,
p.48,1992.(InHebrew).
I.Arnon,R.NirenburgandM.Sukenik.Teachingdecimalnumbersusingconcreteobjects,The
SecondConferenceoftheAssociationfortheAdvancementoftheMathematicalEducationinIsrael,
BookofAbstracts,Jerusalem,Israel,p.19,1995.(InHebrew).
I.Arnon.Refiningtheuseofconcreteobjectsforteachingmathematicstochildrenattheageof
concreteoperations,TheThirdConferenceoftheAssociationfortheAdvancementoftheMathematical
EducationinIsrael,BookofAbstracts,Jerusalem,Israel,p.69,1996.(InHebrew).
I.Arnon.Inthemind’seye:Howchildrendevelopmathematicalconcepts–extendingPiaget's
theory.Doctoraldissertation,SchoolofEducation,HaifaUniversity,1998a.
I.Arnon.Similarstagesinthedevelopmentsoftheconceptofrationalnumberandtheconceptof
decimalnumber,andpossiblerelationsbetweentheirdevelopments,TheFifthConferenceofthe
AssociationfortheAdvancementoftheMathematicalEducationinIsrael,BookofAbstracts.Be’er-
Tuvia,Israel,p.42,1998b.(InHebrew).
ThestudiesbyArnonandhercolleagueslistedabovedealwiththedevelopmentof
mathematicalconceptsbyelementaryschoolchildren.Havingcreatedaframeworkthat
combinesAPOStheory,Nesher’stheoryonLearningSystems,andYerushalmy’sideasof
multi-representation,sheinvestigatestheintroductionofmathematicalconceptsasconcrete
actionsversustheirintroductionasconcreteobjects.Sheestablishesdevelopmentalpathsfor
certainfraction-concepts.Shefindsthatstudentstowhomthefractionswereintroducedas
concreteactionsprogressedbetteralongthesepathsthanstudentstowhomthefractionswere
introducedasconcreteobjects.Inaddition,thefindingsestablishthefollowingstageinthe
developmentofconcreteactionsintoabstractobjects:afterabandoningtheconcretematerials,
andbeforeachievingabstractlevels,childrenperformtheconcreteactionsintheirimagination.
ThiscorrespondstotheinteriorizationofAPOStheory.
M.Artigue,Ense?anzayaprendizajedelanálisiselemental:?quésepuedeaprenderdelas
investigacionesdidácticasyloscambioscurriculares?RevistaLatinoamericanadeInvestigaciónen
MatiemáticaEducativa,1,1,40-55,1998.
Inthefirstpartofthispaper,theauthordiscussesanumberofstudentdifficultiesandtriesto
explainthemusingvarioustheoriesoflearningincludingAPOSTheory.Students’
unwillingnesstoacceptthat0.999…isequalto1isexplained,forexample,byinterpretingthe
formerasaprocess,thelatterasanobjectsothatthetwocannotbeseenasequaluntilthe
studentisabletoencapsulatetheprocesswhichisageneraldifficulty.Inthesecondpartofthe
paper,theauthordiscussesthemeasuresthathavebeentakeninFranceduringthe20th
Centurytoovercomethesedifficulties.
11
M.Asiala,A.Brown,D.DeVries,E.Dubinsky,D.MathewsandK.Thomas.Aframeworkfor
researchandcurriculumdevelopmentinundergraduatemathematicseducation,ResearchinCollegiate
MathematicsEducationII,CBMSIssuesinMathematicsEducation,6,1-32,1996.
Theauthorsdetailaresearchframeworkwiththreecomponentsandgiveexamplesofits
application.Theframeworkutilizesqualitativemethodsforresearchandisbasedonavery
specifictheoreticalperspectivethatwasdevelopedthroughattemptstounderstandtheideasof
Piagetconcerningreflectiveabstractionandreconstructtheminthecontextofcollegelevel
mathematics.Forthefirstcomponent,thetheoreticalanalysis,theauthorspresenttheAPOS
theory.Forthesecondcomponent,theauthorsdescribespecificinstructionaltreatments,
includingtheACEteachingcycle(activities,classdiscussion,andexercises),cooperative
learning,andtheuseoftheprogramminglanguageISETL.Thefinalcomponentconsistsof
datacollection
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《潘婷廣告策劃案》課件
- 四讀書活動方案
- 高三生物學一輪復習課件微專題:細胞分裂與變異、細胞自噬、焦亡、鐵死亡等
- 數學啟蒙之旅
- 建筑項目管理課件
- 《管理者策略》課件
- 《建筑材料與構造》課件
- 2025年北京市房山區中考數學一模試卷
- 湖南省瀏陽市2023-2024學年高二上學期期末質量監測數學試卷 含解析
- 2025年事業單位考試真題及答案C類
- 2025屆新高考教學教研聯盟高三第二次聯考政治試題及答案
- 賭博酒駕警示教育
- 產業園物業管理實施方案
- 管理學基礎-形考任務三-國開-參考資料
- 梁曉聲母親測試題及答案
- 企業會計人員勞動合同模板2025
- 浙江省腫瘤醫院醫療廢物暫存間環保設施提升改造項目報告表
- 敬老院安全培訓課件
- 《加拉帕戈斯群島》課件
- 社區老舊小區外墻翻新腳手架方案
- 2025年醫院消化內科年度工作計劃
評論
0/150
提交評論