




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
幾種常見(jiàn)的優(yōu)化方法電子結(jié)構(gòu)幾何機(jī)構(gòu)函數(shù)穩(wěn)定點(diǎn)最小點(diǎn)Taylor展開(kāi):V(x)=V(xk)+(x-xk)V’(xk)+1/2(x-xk)2V’’(xk)+…..當(dāng)x是3N個(gè)變量的時(shí)候,V’(xk)成為3Nx1的向量,而V’’(xk)成為3Nx3N的矩陣,矩陣元如:Hessian1幾種常見(jiàn)的優(yōu)化方法電子結(jié)構(gòu)函數(shù)穩(wěn)定點(diǎn)Taylor展開(kāi):當(dāng)x一階梯度法a.SteepestdescendentSk=-gk/|gk|directiongradient知道了方向,如何確定步長(zhǎng)呢?最常用的是先選擇任意步長(zhǎng)l,然后在計(jì)算中調(diào)節(jié)用體系的能量作為外界衡量標(biāo)準(zhǔn),能量升高了則逐步減小步長(zhǎng)。robust,butslow最速下降法2一階梯度法Sk=-gk/|gk|directi最陡下降法(SD)
3最陡下降法(SD)3b.ConjugateGradient(CG)共軛梯度第k步的方向標(biāo)量UsuallymoreefficientthanSD,alsorobust不需要外界能量等作為衡量量利用了上一步的信息4b.ConjugateGradient(CG)共軛2。二階梯度方法這類方法很多,最簡(jiǎn)單的稱為Newton-Raphson方法,而最常用的是Quasi-Newton方法。Quasi-Newton方法:useanapproximationoftheinverseHessian.Formofapproximationdiffersamongmethods牛頓-拉夫遜法BFGSmethodBroyden-Fletcher-Golfarb-ShannoDFPmethodDavidon-Fletcher-Powell52。二階梯度方法這類方法很多,最簡(jiǎn)單的稱為Newton-RaMoleculardynamics分子動(dòng)力學(xué)HistoryItwasnotuntil1964thatMDwasusedtostudyarealisticmolecularsystem,inwhichtheatomsinteractedviaaLennard-Jonespotential.Afterthispoint,MDtechniquesdevelopedrapidlytoencompassdiatomicspecies,water(whichisstillthesubjectofcurrentresearchtoday!),smallrigidmolecules,flexiblehydrocarbonsandnowevenmacromoleculessuchasproteinsandDNA.Theseareallexamplesofcontinuousdynamicalsimulations,andthewayinwhichtheatomicmotioniscalculatedisquitedifferentfromthatinimpulsivesimulationscontaininghard-corerepulsions.6Moleculardynamics分子動(dòng)力學(xué)HistWhatcanwedowithMD–CalculateequilibriumconfigurationalpropertiesinasimilarfashiontoMC.–Studytransportproperties(e.g.mean-squareddisplacementanddiffusioncoefficients).–MDintheNVT,NpTandNpHensembles–Theunitedatomapproximation–ConstraintdynamicsandSHAKE–Rigidbodydynamics–MultipletimestepalgorithmsExtendthebasicMDalgorithm7WhatcanwedowithMD–Calcul‘Impulsive’moleculardynamics
1.Dynamicsofperfectly‘hard’particlescanbesolvedexactly,butprocessbecomesinvolvedformanypart(N-bodyproblem).2.Canuseanumericalschemethatadvancesthesystemforwardintimeuntilacollisionoccurs. 3.Velocitiesofcollidingparticles(usuallyapair!)thenrecalculatedandsystemputintomotionagain.4.Simulationproceedsbyfitsandstarts,withameantimebetweencollisionsrelatedtotheaveragekineticenergyoftheparticles.5.Potentiallyveryefficientalgorithm,butcollisionsbetweenparticlesofcomplexshapearenoteasytosolve,andcannotbegeneralisedtocontinuouspotentials. 88Continuoustimemoleculardynamics1.Bycalculatingthederivativeofamacromolecularforcefield,wecanfindtheforcesoneachatomasafunctionofitsposition.2.Requireamethodofevolvingthepositionsoftheparticlesinspaceandtimetoproducea‘true’dynamicaltrajectory.3.StandardtechniqueistosolveNewton’sequationsofmotionnumerically,usingsomefinitedifferencescheme,whichisknownasintegration.4.ThismeansthatweadvancethesystembysomesmalltimestepΔt,recalculatetheforcesandvelocities,andthenrepeattheprocessiteratively.5.ProvidedΔtissmallenough,thisproducesanacceptableapproximatesolutiontothecontinuousequationsofmotion.9ContinuoustimemoleculardynaExampleofintegratorforMDsimulationOneofthemostpopularandwidelyusedintegratorsistheVerletleapfrogmethod:positionsandvelocitiesofparticlesaresuccessively‘leap-frogged’overeachotherusingaccelerationscalculatedfromforcefield.TheVerletschemehastheadvantageofhighprecision(oforderΔt4),whichmeansthatalongertimestepcanbeusedforagivenleveloffluctuations.Themethodalsoenjoysverylowdrift,providedanappropriatetimestepandforcecut-offareused.r(t+Dt)=r(t)+v(t+Dt/2)Dtv(t+Dt/2)=v(t-Dt/2)+a(t+Dt/2)Dt10ExampleofintegratorforMDsOtherintegratorsforMDsimulationsAlthoughtheVerletleapfrogmethodisnotparticularlyfast,thisisrelativelyunimportantbecausethetimerequiredforintegrationisusuallytrivialincomparisontothetimerequiredfortheforcecalculations.Themostimportantconcernforanintegratoristhatitexhibitslowdrift,i.e.thatthetotalenergyfluctuatesaboutsomeconstantvalue.Anecessary(butnotsufficient)conditionforthisisthatitissymplectic.Crudelyspeaking,thismeansthatitshouldbetimereversible(likeNewton’sequations),i.e.ifwereversethemomentaofallparticlesatagiveninstant,thesystemshouldtracebackalongitsprevioustrajectory.11OtherintegratorsforMDsimulOtherintegratorsforMDsimulationsTheVerletmethodissymplectic,butmethodssuchaspredictor-correctorschemesarenot.Non-symplecticmethodsgenerallyhaveproblemswithlongtermenergyconservation.Havingachievedlowdrift,wouldalsoliketheenergyfluctuationsforagiventimesteptobeaslowaspossible.Alwaysdesirabletousethelargesttimesteppossible.Ingeneral,thetrajectoriesproducedbyintegrationwilldivergeexponentiallyfromtheirtruecontinuouspathsduetotheLyapunovinstability.However,thisdoesnotconcernusgreatly,asthethermalsamplingisunaffected?expectationvaluesunchanged.12OtherintegratorsforMDsimulChoosingthecorrecttimestep…1.
Thechoiceoftimestepiscrucial:tooshortandphasespaceissampledinefficiently,toolongandtheenergywillfluctuatewildlyandthesimulationmaybecomecatastrophicallyunstable(“blowup”).2.Theinstabilitiesarecausedbythemotionofatomsbeingextrapolatedintoregionswherethepotentialenergyisprohibitivelyhigh(e.g.atomsoverlapping).3.Agoodruleofthumbisthatwhensimulatinganatomicfluid,thetimestepshouldbecomparabletothemeantimebetweencollisions(about5fsforArat298K).4.Forflexiblemolecules,thetimestepshouldbeanorderofmagnitudelessthantheperiodofthefastestmotion(usuallybondstretching:C—Haround10fssouse1fs).13ChoosingthecorrecttimestepForclassicMD,therecouldbemanytrickstospeedupcalculations,allcenteringaroundreducingtheeffortinvolvedinthecalculationoftheinteratomicforces,asthisisgenerallymuchmoretime-consumingthanintegration.ForexampleTruncatethelong-rangeforces:charge-charge,charge-dipoleLook-uptablesForfirstprinciplesMD,asforcesareevaluatedfromquantummechanics,weareonlyconcernedwiththetime-step.14ForclassicMD,therecouldbeBecausetheinteractionsarecompletelyelasticandpairwiseacting,bothenergyandmomentumareconserved.Therefore,MDnaturallysamplesfromthemicrocanonicalorNVEensemble.Asmentionedpreviously,theNVEensembleisnotveryusefulforstudyingrealsystems.Wewouldliketobeabletosimulatesystemsatconstanttemperatureorconstantpressure.ThesimplestMD,likeverletmethod,isadeterministicsimulationtechniqueforevolvingsystemstoequilibriumbysolvingNewton’slawsnumerically.15BecausetheinteractionsarecMDindifferentthermodynamicensemblesInthislecture,wewilldiscusswaysofusingMDtosamplefromdifferentthermodynamicensembles,whichareidentifiedbytheirconservedquantities.
Canonical(NVT)–Fixednumberofparticles,totalvolumeandtemperature.Requirestheparticlestointeractwithathermostat.
Isobaric-isothermal(NpT)–Fixednumberofparticles,pressureandtemperature.Requiresparticlestointeractwithathermostatandbarostat.
Isobaric-isenthalpic(NpH)–Fixednumberofparticles,pressureandenthalpy.Unusual,butrequiresparticlestointeractwithabarostatonly.16MDindifferentthermodynamicAdvancedapplicationsofMDWewillthenstudysomemoreadvancedMDmethodsthataredesignedspecificallytospeedup,ormakepossible,thesimulationoflargescalemacromolecularsystems.Allthesemethodsshareacommonprinciple:theyfreezeout,ordecouple,thehighfrequencydegreesoffreedom.Thisenablestheuseofalargertimestepwithoutnumericalinstability.Thesemethodsinclude:–Unitedatomapproximation–ConstraintdynamicsandSHAKE–Rigidbodydynamics–Multipletimestepalgorithms17AdvancedapplicationsofMD17RevisionofNVEMDLet’sstartbyrevisinghowtodoNVEMD.Recallthatwecalculatedtheforcesonallatomsfromthederivativeoftheforcefield,thenintegratedthee.o.m.usingafinitedifferenceschemewithsometimestepΔt.Wethenrecalculatedtheforcesontheatoms,andrepeatedtheprocesstogenerateadynamicaltrajectoryintheNVEensemble.Becausethemeankineticenergyisconstant,theaveragekinetictemperatureTKisalsoconstant.However,inthermalequilibrium,weknowthatinstantaneousTKwillfluctuate.IfwewanttosamplefromtheNVTensemble,weshouldkeepthestatisticaltemperatureconstant.18RevisionofNVEMD18ExtendedLagrangiansThereareessentiallytwowaystokeepthestatisticaltemperatureconstant,andthereforesamplefromthetrueNVTensemble.–Stochastically,usinghybridMC/MDmethods–Dynamically,viaanextendedLagrangianWewilldescribethelattermethodinthislectureAnextendedLagrangianissimplyawayofincludingadegreeoffreedomwhichrepresentsthereservoir,andthencarryingoutasimulationonthisextendedsystem.Energycanflowdynamicallybackandforthfromthereservoir,whichhasacertainthermal‘inertia’associatedwithit.AllwehavetodoisaddsometermstoNewton’sequationsofmotionforthesystem.19ExtendedLagrangians19ExtendedLagrangiansThestandardLagrangianLiswrittenasthedifferenceofthekineticandpotentialenergies:Newton’slawsthenfollowbysubstitutingthisintotheEuler-Lagrangeequation:Newton’sequationsandLagrangianformalismareequivalent,butthelatterusesgeneralisedcoordinates...20ExtendedLagrangians..20CanonicalMDSo,ourextendedLagrangianincludesanextracoordinateζ,whichisafrictionalcoefficientthatevolvesintimesoastominimisethedifferencebetweentheinstantaneouskineticandstatisticaltemperatures.Themodifiedequationsofmotionare:TheconservedquantityistheHelmholtzfreeenergy.(modifiedformofNewtonII)21CanonicalMD(modifiedformofCanonicalMDByadjustingthethermostatrelaxationtimetT
(usuallyintherange0.5to2ps)thesimulationwillreachanequilibriumstatewithconstantstatisticaltemperatureTS.TSisnowaparameterofoursystem,asopposedtothemeasuredinstantaneousvalueofTKwhichfluctuatesaccordingtotheamountofthermalenergyinthesystematanyparticulartime.ToohighavalueoftTandenergywillflowveryslowlybetweenthesystemandthereservoir(overdamped).ToolowavalueoftTandtemperaturewilloscillateaboutitsequilibriumvalue(underdamped).ThisistheNosé-Hooverthermostatmethod.22CanonicalMD22CanonicalMDTherearemanyothermethodsforachievingconstanttemperature,butnotallofthemsamplefromthetrueNVTensembleduetoalackofmicroscopicreversibility.Wecallthesepseudo-NVTmethods,andtheyinclude:–BerendsenmethodVelocitiesarerescaleddeterministicallyaftereachstepsothatthesystemisforcedtowardsthedesiredtemperature–GaussianconstraintsMakesthekineticenergyaconstantofthemotionbyminimisingtheleastsquaresdifferencebetweentheNewtonianandconstrainedtrajectoriesThesemethodsareoftenfaster,butonlyconvergeonthetruecanonicalaveragepropertiesasO(1/N).23CanonicalMD23Isothermal-isobaricMDWecanapplytheextendedLagrangianapproachtosimulationsatconstantpressurebysimplyaddingyetanothercoordinatetooursystem.Weuseη,whichisafrictionalcoefficientthatevolvesintimetominimisethedifferencebetweentheinstantaneouspressurep(t),measuredbyavirialexpression,andthepressureofanexternalreservoirpext.TheequationsofmotionforthesystemcanthenbeobtainedbysubstitutingthemodifiedLagrangianintotheEuler-Lagrangeequations.Thesenowincludetworelaxationtimes:oneforthethermostattT,andoneforthebarostattp.24Isothermal-isobaricMD24Isothermal-isobaricMDTheisknownastheNosé-Hoovermethod(Melchionnatype)andtheequationsofmotionare:25Isothermal-isobaricMD25Isothermal-isobaricMD26Isothermal-isobaricMD26Constraintdynamicsfreezethebondstretchingmotionsofthehydrogens(oranyotherbond,inprinciple).Weapplyasetofholonomicconstraintstothesystem,whichar
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息系統(tǒng)監(jiān)理師2025年考前沖刺試題及答案
- 稀土金屬加工質(zhì)量改進(jìn)項(xiàng)目策劃與實(shí)施技巧考核試卷
- 微生物肥料在促進(jìn)作物對(duì)養(yǎng)分脅迫適應(yīng)性的生理響應(yīng)研究考核試卷
- 釀造企業(yè)產(chǎn)品創(chuàng)新考核試卷
- 管理學(xué)與行政結(jié)合試題及答案
- 嵌入式系統(tǒng)開(kāi)發(fā)的商業(yè)機(jī)遇試題及答案
- 行政組織的變革策略探討試題及答案
- 全面關(guān)注公路工程考試的發(fā)展趨勢(shì)試題及答案
- 信息系統(tǒng)監(jiān)理師高級(jí)課程介紹試題及答案
- 嵌入式系統(tǒng)高效遠(yuǎn)程控制試題及答案
- 遼寧省名校聯(lián)盟2025年高三5月份聯(lián)合考試語(yǔ)文及答案
- 全國(guó)助殘日 課件高中下學(xué)期主題班會(huì)
- 哈爾濱歷史文化課件
- 2025年浙江省杭州市錢塘區(qū)中考二模英語(yǔ)試題(含筆試答案無(wú)聽(tīng)力答案、原文及音頻)
- 2025年考研政治真題及答案
- 動(dòng)力電池?zé)崾Э芈訖C(jī)理及其控制策略研究
- 2024年江蘇鎮(zhèn)江中考地理試卷真題及答案詳解(精校打印)
- 輕型顱腦閉合性損傷護(hù)理查房
- 建設(shè)項(xiàng)目管理工作總結(jié)范文
- 體育場(chǎng)館停車場(chǎng)車輛管理規(guī)范范文
- 文明檢修培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論