




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題34極坐標(biāo)系與參數(shù)方程十年大數(shù)據(jù)*全景展示年份題號(hào)考點(diǎn)考查內(nèi)容2011文理23極坐標(biāo)系與參數(shù)方程直線和圓的參數(shù)方程,極坐標(biāo)方程的應(yīng)用2012文理23極坐標(biāo)系與參數(shù)方程極坐標(biāo)與直角坐標(biāo)的互化,橢圓參數(shù)方程的應(yīng)用2013卷1文理23極坐標(biāo)系與參數(shù)方程參數(shù)方程與極坐標(biāo)方程的互化,極坐標(biāo)方程的應(yīng)用卷2文理23極坐標(biāo)系與參數(shù)方程參數(shù)方程的求法,參數(shù)方程的應(yīng)用2014卷1文理23極坐標(biāo)系與參數(shù)方程直線和橢圓的參數(shù)方程及其應(yīng)用卷2文理23極坐標(biāo)系與參數(shù)方程圓的極坐標(biāo)方程與參數(shù)方程的互化,圓的參數(shù)方程的應(yīng)用2015卷1文理23極坐標(biāo)系與參數(shù)方程直角坐標(biāo)方程與極坐標(biāo)互化;直線與圓極坐標(biāo)方程的應(yīng)用卷2文理23極坐標(biāo)系與參數(shù)方程極坐標(biāo)方程與參數(shù)方程的互化,極坐標(biāo)方程的應(yīng)用2016卷1文理23極坐標(biāo)系與參數(shù)方程極坐標(biāo)方程與參數(shù)方程的互化,極坐標(biāo)方程的應(yīng)用卷2文理23極坐標(biāo)系與參數(shù)方程圓的極坐標(biāo)方程與普通方程互化,直線的參數(shù)方程,圓的弦長(zhǎng)公式卷3文理23極坐標(biāo)系與參數(shù)方程橢圓的參數(shù)方程,直線的極坐標(biāo)方程,參數(shù)方程的應(yīng)用2017卷1文理22極坐標(biāo)系與參數(shù)方程直角坐標(biāo)方程與極坐標(biāo)方程的互化,參數(shù)方程與普通方程的互化,橢圓參數(shù)方程的應(yīng)用卷2文理22極坐標(biāo)系與參數(shù)方程直角坐標(biāo)方程與極坐標(biāo)方程的互化,極坐標(biāo)方程的應(yīng)用卷3文理22極坐標(biāo)系與參數(shù)方程參數(shù)方程與普通方程的互化,極坐標(biāo)方程的應(yīng)用2018卷1文理22極坐標(biāo)系與參數(shù)方程極坐標(biāo)與直角坐標(biāo)方程互化,直線與圓的位置關(guān)系,圓的幾何性質(zhì)卷2文理22極坐標(biāo)系與參數(shù)方程直線和橢圓的參數(shù)方程,直線參數(shù)方程參數(shù)幾何意義的應(yīng)用卷3文理22極坐標(biāo)系與參數(shù)方程直線與圓的位置關(guān)系,圓的參數(shù)方程,點(diǎn)的軌跡方程求法2019卷1文理22極坐標(biāo)系與參數(shù)方程參數(shù)方程與普通方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,參數(shù)方程的應(yīng)用卷2文理22極坐標(biāo)系與參數(shù)方程直線和圓的極坐標(biāo)方程及其應(yīng)用卷3文理22極坐標(biāo)系與參數(shù)方程極坐標(biāo)方程及其應(yīng)用2020卷1文理22極坐標(biāo)系與參數(shù)方程參數(shù)方程與普通方程互化,極坐標(biāo)方程與直角坐標(biāo)方程互化卷2文理22極坐標(biāo)系與參數(shù)方程參數(shù)方程化普通方程,直角坐標(biāo)方程化極坐標(biāo)方程,極坐標(biāo)與參數(shù)方程的綜合應(yīng)用卷3文理22極坐標(biāo)系與參數(shù)方程極坐標(biāo)方程與直角坐標(biāo)方程的互化,參數(shù)方程及其應(yīng)用大數(shù)據(jù)分析*預(yù)測(cè)高考考點(diǎn)出現(xiàn)頻率2021年預(yù)測(cè)考點(diǎn)116平面直角坐標(biāo)系中的伸縮變換23次考0次2021年高考在試題難度、知識(shí)點(diǎn)考查等方面,不會(huì)有太大的變化,主要考查極坐標(biāo)方程和直角坐標(biāo)方程的互化、及常見曲線的極坐標(biāo)方程與極坐標(biāo)方程的簡(jiǎn)單應(yīng)用.考點(diǎn)117極坐標(biāo)和直角坐標(biāo)的互化23次考5次考點(diǎn)118參數(shù)方程與普通方程的互化23次考1次考點(diǎn)119極坐標(biāo)方程與參數(shù)方程的綜合應(yīng)用23次考17次十年試題分類*探求規(guī)律考點(diǎn)116平面直角坐標(biāo)系中的伸縮變換考點(diǎn)117極坐標(biāo)和直角坐標(biāo)的互化1.(2020全國(guó)Ⅱ文理21)已知曲線SKIPIF1<0的參數(shù)方程分別為SKIPIF1<0(SKIPIF1<0為參數(shù)),SKIPIF1<0(SKIPIF1<0為參數(shù)).(1)將SKIPIF1<0的參數(shù)方程化為普通方程;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系.設(shè)SKIPIF1<0的交點(diǎn)為SKIPIF1<0,求圓心在極軸上,且經(jīng)過極點(diǎn)和SKIPIF1<0的圓的極坐標(biāo)方程.【解析】(1)由SKIPIF1<0得SKIPIF1<0的普通方程為:SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,兩式作差可得SKIPIF1<0的普通方程為:SKIPIF1<0.(2)由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0.設(shè)所求圓圓心的直角坐標(biāo)為SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0所求圓的半徑SKIPIF1<0,SKIPIF1<0所求圓的直角坐標(biāo)方程為:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0所求圓的極坐標(biāo)方程為SKIPIF1<0.2.(2020全國(guó)Ⅲ文理22)在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)且SKIPIF1<0),SKIPIF1<0與坐標(biāo)軸交于SKIPIF1<0兩點(diǎn).(1)求SKIPIF1<0;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,求直線SKIPIF1<0的極坐標(biāo)方程.【解析】(1)令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),則SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),則SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0.(2)由(1)可知SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.由SKIPIF1<0可得,直線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.3.(2020江蘇22)在極坐標(biāo)系中,已知點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,點(diǎn)SKIPIF1<0在圓SKIPIF1<0上(其中SKIPIF1<0,SKIPIF1<0).(1)求SKIPIF1<0,SKIPIF1<0的值(2)求出直線SKIPIF1<0與圓SKIPIF1<0的公共點(diǎn)的極坐標(biāo).【解析】(1)SKIPIF1<0.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0(舍);即所求交點(diǎn)坐標(biāo)為當(dāng)SKIPIF1<0.4.(2019全國(guó)II文理22)在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過點(diǎn)且與垂直,垂足為P.(1)當(dāng)時(shí),求及l(fā)的極坐標(biāo)方程;(2)當(dāng)M在C上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.【解析】(1)因?yàn)樵贑上,當(dāng)時(shí),.由已知得.設(shè)為l上除P的任意一點(diǎn).在中,經(jīng)檢驗(yàn),點(diǎn)在曲線上.所以,l的極坐標(biāo)方程為.(2)設(shè),在中,即..因?yàn)镻在線段OM上,且,故的取值范圍是.所以,P點(diǎn)軌跡的極坐標(biāo)方程為.5.(2019全國(guó)III文理22)如圖,在極坐標(biāo)系Ox中,,,,,弧,,所在圓的圓心分別是,,,曲線是弧,曲線是弧,曲線是弧.(1)分別寫出,,的極坐標(biāo)方程;(2)曲線由,,構(gòu)成,若點(diǎn)在M上,且,求P的極坐標(biāo).【解析】(1)由題設(shè)可得,弧所在圓的極坐標(biāo)方程分別為,,,所以的極坐標(biāo)方程為,的極坐標(biāo)方程為,的極坐標(biāo)方程為.(2)設(shè),由題設(shè)及(1)知若,則,解得;若,則,解得或;若,則,解得.綜上,P的極坐標(biāo)為或或或.考點(diǎn)118參數(shù)方程與普通方程的互化6.(2020上海14)已知直線方程SKIPIF1<0的一個(gè)參數(shù)方程可以是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】A.參數(shù)方程可化簡(jiǎn)為SKIPIF1<0,故A不正確;B.參數(shù)方程可化簡(jiǎn)為SKIPIF1<0,故B不正確;C.參數(shù)方程可化簡(jiǎn)為SKIPIF1<0,故C不正確;D.參數(shù)方程可化簡(jiǎn)為SKIPIF1<0,故D正確.故選D.7.(2018全國(guó)Ⅲ)[選修4—4:坐標(biāo)系與參數(shù)方程](10分)在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0的參數(shù)方程為SKIPIF1<0,(SKIPIF1<0為參數(shù)),過點(diǎn)SKIPIF1<0且傾斜角為SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn).(1)求SKIPIF1<0的取值范圍;(2)求SKIPIF1<0中點(diǎn)SKIPIF1<0的軌跡的參數(shù)方程.【解析】(1)SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0交于兩點(diǎn).當(dāng)SKIPIF1<0時(shí),記SKIPIF1<0,則SKIPIF1<0的方程為SKIPIF1<0.SKIPIF1<0與SKIPIF1<0交于兩點(diǎn)當(dāng)且僅當(dāng)SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0.(2)SKIPIF1<0的參數(shù)方程為SKIPIF1<0為參數(shù),SKIPIF1<0SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對(duì)應(yīng)的參數(shù)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0.于是SKIPIF1<0,SKIPIF1<0.又點(diǎn)SKIPIF1<0的坐標(biāo)SKIPIF1<0滿足SKIPIF1<0所以點(diǎn)SKIPIF1<0的軌跡的參數(shù)方程是SKIPIF1<0SKIPIF1<0為參數(shù),SKIPIF1<0SKIPIF1<0.考點(diǎn)119極坐標(biāo)方程與參數(shù)方程的綜合應(yīng)用8.(2018北京文理)在極坐標(biāo)系中,直線SKIPIF1<0與圓SKIPIF1<0相切,則SKIPIF1<0=___.【答案】SKIPIF1<0【解析】利用SKIPIF1<0,SKIPIF1<0,可得直線的方程為SKIPIF1<0,圓的方程為SKIPIF1<0,所以圓心SKIPIF1<0,半徑SKIPIF1<0,由于直線與圓相切,故圓心到直線的距離等于半徑,即SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.9.(2017北京文理)在極坐標(biāo)系中,點(diǎn)A在圓SKIPIF1<0上,點(diǎn)P的坐標(biāo)為SKIPIF1<0),則SKIPIF1<0的最小值為___________.【答案】1【解析】圓的普通方程為SKIPIF1<0,即SKIPIF1<0.設(shè)圓心為SKIPIF1<0,所以SKIPIF1<0.10.(2017天津文理)在極坐標(biāo)系中,直線SKIPIF1<0與圓SKIPIF1<0的公共點(diǎn)的個(gè)數(shù)為_____.【答案】2【解析】直線的普通方程為SKIPIF1<0,圓的普通方程為SKIPIF1<0,因?yàn)閳A心到直線的距離SKIPIF1<0,所以有兩個(gè)交點(diǎn).11.(2016北京文理)在極坐標(biāo)系中,直線SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),則SKIPIF1<0.【答案】2【解析】將SKIPIF1<0化為直角坐標(biāo)方程為SKIPIF1<0,將ρ=2cosθ化為直角坐標(biāo)方程為SKIPIF1<0,圓心坐標(biāo)為(1,0),半徑r=1,又(1,0)在直線SKIPIF1<0上,所以|AB|=2r=2.12.(2015廣東文理)已知直線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,點(diǎn)SKIPIF1<0的極坐標(biāo)為SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為.【答案】SKIPIF1<0【解析】由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,故直線SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0,而點(diǎn)SKIPIF1<0對(duì)應(yīng)的直角坐標(biāo)為SKIPIF1<0,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0:SKIPIF1<0的距離為SKIPIF1<0.13.(2015安徽文理)在極坐標(biāo)系中,圓SKIPIF1<0上的點(diǎn)到直線SKIPIF1<0距離的最大值是.【答案】6【解析】圓SKIPIF1<0即SKIPIF1<0,化為直角坐標(biāo)方程為SKIPIF1<0,直線SKIPIF1<0,則SKIPIF1<0,化為直角坐標(biāo)方程為SKIPIF1<0,圓心SKIPIF1<0到直線的距離為SKIPIF1<0,所以圓上的點(diǎn)到直線距離的最大值為6.14.(2020全國(guó)Ⅰ文理21)在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0SKIPIF1<0為參數(shù)SKIPIF1<0.以坐標(biāo)原點(diǎn)為極點(diǎn),SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是什么曲線?(2)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0與SKIPIF1<0的公共點(diǎn)的直角坐標(biāo).【解析】(1)當(dāng)SKIPIF1<0時(shí),曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)),兩式平方相加得SKIPIF1<0,∴曲線SKIPIF1<0表示以坐標(biāo)原點(diǎn)為圓心,半徑為1的圓.(2)當(dāng)SKIPIF1<0時(shí),曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)),∴SKIPIF1<0,曲線SKIPIF1<0的參數(shù)方程化為SKIPIF1<0為參數(shù)),兩式相加得曲線SKIPIF1<0方程為SKIPIF1<0,得SKIPIF1<0,平方得SKIPIF1<0,曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,曲線SKIPIF1<0直角坐標(biāo)方程為SKIPIF1<0,聯(lián)立SKIPIF1<0方程SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0,SKIPIF1<0公共點(diǎn)的直角坐標(biāo)為SKIPIF1<0.15.(2019全國(guó)1文理22)在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求C和l的直角坐標(biāo)方程;(2)求C上的點(diǎn)到l距離的最小值.【解析】(1)因?yàn)椋?,所以C的直角坐標(biāo)方程為.的直角坐標(biāo)方程為.(2)由(1)可設(shè)C的參數(shù)方程為(為參數(shù),).C上的點(diǎn)到的距離為.當(dāng)時(shí),取得最小值7,故C上的點(diǎn)到距離的最小值為.16.(2018全國(guó)Ⅰ文理)在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的方程為SKIPIF1<0.以坐標(biāo)原點(diǎn)為極點(diǎn),SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(1)求SKIPIF1<0的直角坐標(biāo)方程;(2)若SKIPIF1<0與SKIPIF1<0有且僅有三個(gè)公共點(diǎn),求SKIPIF1<0的方程.【解析】(1)由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0.(2)由(1)知SKIPIF1<0是圓心為SKIPIF1<0,半徑為SKIPIF1<0的圓.由題設(shè)知,SKIPIF1<0是過點(diǎn)SKIPIF1<0且關(guān)于SKIPIF1<0軸對(duì)稱的兩條射線.記SKIPIF1<0軸右邊的射線為SKIPIF1<0,SKIPIF1<0軸左邊的射線為SKIPIF1<0.由于SKIPIF1<0在圓SKIPIF1<0的外面,故SKIPIF1<0與SKIPIF1<0有且僅有三個(gè)公共點(diǎn)等價(jià)于SKIPIF1<0與SKIPIF1<0只有一個(gè)公共點(diǎn)且SKIPIF1<0與SKIPIF1<0有兩個(gè)公共點(diǎn),或SKIPIF1<0與SKIPIF1<0只有一個(gè)公共點(diǎn)且SKIPIF1<0與SKIPIF1<0有兩個(gè)公共點(diǎn).當(dāng)SKIPIF1<0與SKIPIF1<0只有一個(gè)公共點(diǎn)時(shí),SKIPIF1<0到SKIPIF1<0所在直線的距離為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.經(jīng)檢驗(yàn),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0沒有公共點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0只有一個(gè)公共點(diǎn),SKIPIF1<0與SKIPIF1<0有兩個(gè)公共點(diǎn).當(dāng)SKIPIF1<0與SKIPIF1<0只有一個(gè)公共點(diǎn)時(shí),SKIPIF1<0到SKIPIF1<0所在直線的距離為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.經(jīng)檢驗(yàn),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0沒有公共點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0沒有公共點(diǎn).綜上,所求SKIPIF1<0的方程為SKIPIF1<0.17.(2018全國(guó)Ⅱ文理)在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)),直線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)).(1)求SKIPIF1<0和SKIPIF1<0的直角坐標(biāo)方程;(2)若曲線SKIPIF1<0截直線SKIPIF1<0所得線段的中點(diǎn)坐標(biāo)為SKIPIF1<0,求SKIPIF1<0的斜率.【解析】(1)曲線SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0.(2)將SKIPIF1<0的參數(shù)方程代入SKIPIF1<0的直角坐標(biāo)方程,整理得關(guān)于SKIPIF1<0的方程SKIPIF1<0.①因?yàn)榍€SKIPIF1<0截直線SKIPIF1<0所得線段的中點(diǎn)SKIPIF1<0在SKIPIF1<0內(nèi),所以①有兩個(gè)解,設(shè)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.又由①得SKIPIF1<0,故SKIPIF1<0,于是直線SKIPIF1<0的斜率SKIPIF1<0.18.(2018江蘇)在極坐標(biāo)系中,直線SKIPIF1<0的方程為SKIPIF1<0,曲線SKIPIF1<0的方程為SKIPIF1<0,求直線SKIPIF1<0被曲線SKIPIF1<0截得的弦長(zhǎng).【解析】因?yàn)榍€SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,所以曲線SKIPIF1<0的圓心為SKIPIF1<0,直徑為4的圓.因?yàn)橹本€SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,則直線SKIPIF1<0過SKIPIF1<0,傾斜角為SKIPIF1<0,所以A為直線SKIPIF1<0與圓SKIPIF1<0的一個(gè)交點(diǎn).設(shè)另一個(gè)交點(diǎn)為B,則∠OAB=SKIPIF1<0,連結(jié)OB,因?yàn)镺A為直徑,從而∠OBA=SKIPIF1<0,所以SKIPIF1<0.因此,直線SKIPIF1<0被曲線SKIPIF1<0截得的弦長(zhǎng)為SKIPIF1<0.19.(2017全國(guó)Ⅰ文理)在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0,(SKIPIF1<0為參數(shù)),直線SKIPIF1<0的參數(shù)方程為SKIPIF1<0QUOTEx=a+4t,y=1?t,(SKIPIF1<0為參數(shù)).(1)若SKIPIF1<0,求SKIPIF1<0與SKIPIF1<0的交點(diǎn)坐標(biāo);(2)若SKIPIF1<0上的點(diǎn)到SKIPIF1<0距離的最大值為SKIPIF1<0,求SKIPIF1<0.【解析】(1)曲線SKIPIF1<0的普通方程為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的普通方程為SKIPIF1<0.由SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,從而SKIPIF1<0與SKIPIF1<0的交點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0.(2)直線SKIPIF1<0的普通方程為SKIPIF1<0,故SKIPIF1<0上的點(diǎn)SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0.由題設(shè)得SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0.由題設(shè)得SKIPIF1<0,所以SKIPIF1<0.綜上,SKIPIF1<0或SKIPIF1<0.20.(2017全國(guó)Ⅱ文理)在直角坐標(biāo)系SKIPIF1<0中,以坐標(biāo)原點(diǎn)為極點(diǎn),SKIPIF1<0軸的正半軸為極軸建立極坐標(biāo)系,曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(1)SKIPIF1<0為曲線SKIPIF1<0上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且滿足SKIPIF1<0,求點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的直角坐標(biāo)方程;(2)設(shè)點(diǎn)SKIPIF1<0的極坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,求SKIPIF1<0面積的最大值.【解析】(1)設(shè)SKIPIF1<0的極坐標(biāo)為SKIPIF1<0SKIPIF1<0,SKIPIF1<0的極坐標(biāo)為SKIPIF1<0SKIPIF1<0.由橢圓知SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0的極坐標(biāo)方程SKIPIF1<0SKIPIF1<0,因此SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0.(2)設(shè)點(diǎn)SKIPIF1<0的極坐標(biāo)為SKIPIF1<0SKIPIF1<0.由題設(shè)知SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0面積SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0,所以SKIPIF1<0面積的最大值為SKIPIF1<0.21.(2017全國(guó)Ⅲ文理)在直角坐標(biāo)系SKIPIF1<0中,直線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)),直線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)).設(shè)SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,當(dāng)SKIPIF1<0變化時(shí),SKIPIF1<0的軌跡為曲線SKIPIF1<0.(1)寫出SKIPIF1<0的普通方程;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,設(shè)SKIPIF1<0:SKIPIF1<0SKIPIF1<0,SKIPIF1<0為SKIPIF1<0與SKIPIF1<0的交點(diǎn),求SKIPIF1<0的極徑.【解析】(1)消去參數(shù)SKIPIF1<0得SKIPIF1<0的普通方程SKIPIF1<0,消去參數(shù)SKIPIF1<0得SKIPIF1<0的普通方程SKIPIF1<0.設(shè)SKIPIF1<0,由題設(shè)得SKIPIF1<0,消去SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0的普通方程為SKIPIF1<0.(2)SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,從而SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0,所以交點(diǎn)SKIPIF1<0的極徑為SKIPIF1<0.22.(2017江蘇)在平面坐標(biāo)系中SKIPIF1<0中,已知直線SKIPIF1<0的參考方程為SKIPIF1<0(SKIPIF1<0為參數(shù)),曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)).設(shè)SKIPIF1<0為曲線SKIPIF1<0上的動(dòng)點(diǎn),求點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最小值.【解析】直線SKIPIF1<0的普通方程為SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,設(shè)SKIPIF1<0,從而點(diǎn)SKIPIF1<0到直線SKIPIF1<0的的距離SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.因此當(dāng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0時(shí),曲線SKIPIF1<0上點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離取到最小值SKIPIF1<0.23.(2016全國(guó)I文理)在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0QUOTEx=acost,y=1+asint,(t為參數(shù),a>0).在以坐標(biāo)原點(diǎn)為極點(diǎn),SKIPIF1<0軸正半軸為極軸的極坐標(biāo)系中,曲線SKIPIF1<0:SKIPIF1<0.(I)說明SKIPIF1<0是哪種曲線,并將SKIPIF1<0的方程化為極坐標(biāo)方程;(II)直線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,其中SKIPIF1<0滿足SKIPIF1<0,若曲線SKIPIF1<0與SKIPIF1<0的公共點(diǎn)都在SKIPIF1<0上,求a.【解析】(1)(均為參數(shù)),∴ ①∴為以為圓心,為半徑的圓.方程為.∵,∴,即為的極坐標(biāo)方程.(2),兩邊同乘得,,即 ②:化為普通方程為,由題意:和的公共方程所在直線即為,①—②得:,即為,∴,∴.24.(2016全國(guó)II文理)在直角坐標(biāo)系SKIPIF1<0中,圓C的方程為SKIPIF1<0.(I)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;(II)直線l的參數(shù)方程是SKIPIF1<0(t為參數(shù)),l與C交于A、B兩點(diǎn),SKIPIF1<0,求l的斜率.【解析】(Ⅰ)整理圓的方程得SKIPIF1<0,由SKIPIF1<0可知圓SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(Ⅱ)記直線的斜率為SKIPIF1<0,則直線的方程為SKIPIF1<0,由垂徑定理及點(diǎn)到直線距離公式知:SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0.25.(2016全國(guó)III文理)在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(Ⅰ)寫出SKIPIF1<0的普通方程和SKIPIF1<0的直角坐標(biāo)方程;(Ⅱ)設(shè)點(diǎn)P在SKIPIF1<0上,點(diǎn)Q在SKIPIF1<0上,求SKIPIF1<0的最小值及此時(shí)P的直角坐標(biāo).【解析】(Ⅰ)SKIPIF1<0的普通方程為SKIPIF1<0,SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0.(Ⅱ)由題意,可設(shè)點(diǎn)SKIPIF1<0的直角坐標(biāo)為SKIPIF1<0,因?yàn)镾KIPIF1<0是直線,所以SKIPIF1<0的最小值,即為SKIPIF1<0到SKIPIF1<0的距離SKIPIF1<0的最小值,SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,最小值為SKIPIF1<0,此時(shí)SKIPIF1<0的直角坐標(biāo)為SKIPIF1<0.26.(2016江蘇)在平面直角坐標(biāo)系SKIPIF1<0中,已知直線SKIPIF1<0的參數(shù)方程為SKIPIF1<0,橢圓SKIPIF1<0的參數(shù)方程為SKIPIF1<0,設(shè)直線SKIPIF1<0與橢圓SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),求線段SKIPIF1<0的長(zhǎng).【解析】橢圓SKIPIF1<0的普通方程為SKIPIF1<0,將直線SKIPIF1<0的參數(shù)方程SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.27.(2015全國(guó)Ⅰ文理)在直角坐標(biāo)系SKIPIF1<0中,直線SKIPIF1<0:SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0,以坐標(biāo)原點(diǎn)為極點(diǎn),SKIPIF1<0軸的正半軸為極軸建立極坐標(biāo)系.(Ⅰ)求SKIPIF1<0,SKIPIF1<0的極坐標(biāo)方程;(Ⅱ)若直線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的面積.【解析】(Ⅰ)因?yàn)镾KIPIF1<0,∴SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(Ⅱ)將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,|MN|=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0,因?yàn)镾KIPIF1<0的半徑為1,則SKIPIF1<0的面積SKIPIF1<0=SKIPIF1<0.28.(2015全國(guó)Ⅱ文理)在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0為參數(shù),SKIPIF1<0≠0)其中SKIPIF1<0,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0.(Ⅰ)求SKIPIF1<0與SKIPIF1<0交點(diǎn)的直角坐標(biāo);(Ⅱ)若SKIPIF1<0與SKIPIF1<0相交于點(diǎn)A,SKIPIF1<0與SKIPIF1<0相交于點(diǎn)B,求SKIPIF1<0的最大值.【解析】(Ⅰ)曲線SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0,曲線SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0.聯(lián)立SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0與SKIPIF1<0交點(diǎn)的直角坐標(biāo)為SKIPIF1<0和SKIPIF1<0.(Ⅱ)曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,其中SKIPIF1<0.因此SKIPIF1<0得到極坐標(biāo)為SKIPIF1<0,SKIPIF1<0的極坐標(biāo)為SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,最大值為SKIPIF1<0.29.(2015江蘇)已知圓C的極坐標(biāo)方程為SKIPIF1<0,求圓C的半徑.【解析】以極坐標(biāo)系的極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)SKIPIF1<0,以極軸為SKIPIF1<0軸的正半軸,建立直角坐標(biāo)系SKIPIF1<0.圓SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,化簡(jiǎn),得SKIPIF1<0.則圓SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0,即SKIPIF1<0,所以圓SKIPIF1<0的半徑為SKIPIF1<0.30.(2015陜西文理)在直角坐標(biāo)系SKIPIF1<0中,直線SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)).以原點(diǎn)為極點(diǎn),SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,⊙SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(Ⅰ)寫出⊙SKIPIF1<0的直角坐標(biāo)方程;(Ⅱ)SKIPIF1<0為直線SKIPIF1<0上一動(dòng)點(diǎn),當(dāng)SKIPIF1<0到圓心SKIPIF1<0的距離最小時(shí),求SKIPIF1<0的直角坐標(biāo).【解析】(Ⅰ)由,從而有.(Ⅱ)設(shè),則,故當(dāng)SKIPIF1<0=0時(shí),|SKIPIF1<0|取最小值,此時(shí)SKIPIF1<0點(diǎn)的直角坐標(biāo)為SKIPIF1<0.31.(2014全國(guó)Ⅰ文理)已知曲線SKIPIF1<0:SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0為參數(shù)).(Ⅰ)寫出曲線SKIPIF1<0的參數(shù)方程,直線SKIPIF1<0的普通方程;(Ⅱ)過曲線SKIPIF1<0上任一點(diǎn)SKIPIF1<0作與SKIPIF1<0夾角為SKIPIF1<0的直線,交SKIPIF1<0于點(diǎn)SKIPIF1<0,求SKIPIF1<0的最大值與最小值.【解析】SKIPIF1<0SKIPIF1<0……5分(Ⅱ)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐廳臨時(shí)出租協(xié)議書
- 針灸推拿醫(yī)生協(xié)議書
- 裝修公司學(xué)徒協(xié)議書
- 營(yíng)運(yùn)車輛入股協(xié)議書
- 銀行貸款免還協(xié)議書
- 餐廳經(jīng)營(yíng)轉(zhuǎn)讓協(xié)議書
- 食品貨車司機(jī)協(xié)議書
- 閑置水廠合作協(xié)議書
- 音樂機(jī)構(gòu)入股協(xié)議書
- 酒店投資合伙協(xié)議書
- 防雷日常管理制度
- DB23T 3711-2024市縣級(jí)礦產(chǎn)資源總體規(guī)劃編制技術(shù)規(guī)程
- 智能座艙域控制器液冷散熱設(shè)計(jì)及仿真研究
- 2025年沈陽汽車城開發(fā)建設(shè)集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 田徑理論考試復(fù)習(xí)題庫300題(含各題型)
- 泛海三江JB-QGL-9000、JB-QTL-9000、JB-QBL-9000火災(zāi)報(bào)警控制器
- 員工團(tuán)建就餐合同
- 電氣工程及其自動(dòng)化畢業(yè)設(shè)計(jì) 基于PLC的噴涂機(jī)器人控制系統(tǒng)的設(shè)計(jì)
- 滑雪培訓(xùn)服務(wù)合同
- 肌肉注射課件(共45張課件)
- 工程經(jīng)濟(jì)學(xué)(青島理工大學(xué))知到智慧樹章節(jié)測(cè)試課后答案2024年秋青島理工大學(xué)
評(píng)論
0/150
提交評(píng)論