2011-2020年高考數學真題分類匯編 專題19 數列的求和問題(含解析)_第1頁
2011-2020年高考數學真題分類匯編 專題19 數列的求和問題(含解析)_第2頁
2011-2020年高考數學真題分類匯編 專題19 數列的求和問題(含解析)_第3頁
2011-2020年高考數學真題分類匯編 專題19 數列的求和問題(含解析)_第4頁
2011-2020年高考數學真題分類匯編 專題19 數列的求和問題(含解析)_第5頁
已閱讀5頁,還剩34頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題19數列的求和問題十年大數據*全景展示年份題號考點考查內容2011理17拆項消去求和法等比數列的通項公式、性質、等差數列的前SKIPIF1<0項和公式及拆項相消求和法,運算求解能力2012理16公式法與分組求和法靈活運用數列知識求數列問題能力2013卷2理16數列綜合問題等差數列的前SKIPIF1<0項和公式及數列最值問題,函數與方程思想卷1文17拆項消去求和法等差數列的通項公式、前SKIPIF1<0項和公式及列項求和法,方程思想卷1理12數列綜合問題遞推數列、數列單調性、余弦定理、基本不等式應用等基礎知識,綜合利用數學知識分析解決問題能力2014卷1文17錯位相減法等差數列的通項公式及錯位相減法,方程思想、轉化與化歸思想2015卷1理17拆項消去求和法利用數列利用前SKIPIF1<0項和SKIPIF1<0與SKIPIF1<0關系求通項公式、等差數列定義及通項公式、利用拆項消去法數列求和2016卷3理12數列綜合問題對新概念的理解和應用新定義列出滿足條件的數列卷1理17公式法與分組求和法等差數列通項公式與前SKIPIF1<0項和公式、對新概念的理解與應用,分組求和法2017卷3文17拆項消去求和法利用數列利用前SKIPIF1<0項和SKIPIF1<0與SKIPIF1<0關系求通項公式及利用拆項消去法數列求和卷2理15拆項消去求和法等差數列基本量的運算等差數列通項公式、前SKIPIF1<0項和公式及拆項消去求和法,方程思想卷1理12數列綜合問題等比數列的前SKIPIF1<0項和公式、等差數列前SKIPIF1<0項和公式,邏輯推理能力2020卷2文12等差數列等差數列通項公式、前SKIPIF1<0項和公式卷3理17數列綜合問題數學歸納法,錯位相減法求數列的和文17等差數列與等比數列等比數列通項公式,等差數列前SKIPIF1<0項和公式大數據分析*預測高考考點出現頻率2021年預測考點61公式法與分組求和法1/132021年高考數列求和部分仍將重點拆線消去法和錯位相減法及與不等式恒成立等相關的數列綜合問題,求和問題多為解答題第二問,難度為中檔,數列綜合問題為小題壓軸題,為難題考點62裂項相消法求和5/13考點63錯位相減法2/13考點64并項法與倒序求和法1/13考點65數列綜合問題4/13十年試題分類*探求規律考點61公式法與分組求和法1.(2020全國Ⅱ文14)記SKIPIF1<0為等差數列SKIPIF1<0的前SKIPIF1<0項和,若SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【思路導引】∵SKIPIF1<0是等差數列,根據已知條件SKIPIF1<0,求出公差,根據等差數列前SKIPIF1<0項和,即可求得答案.【解析】SKIPIF1<0SKIPIF1<0是等差數列,且SKIPIF1<0.設SKIPIF1<0等差數列的公差SKIPIF1<0,根據等差數列通項公式:SKIPIF1<0,可得SKIPIF1<0,即:SKIPIF1<0,整理可得:SKIPIF1<0,解得:SKIPIF1<0.SKIPIF1<0根據等差數列前SKIPIF1<0項和公式:SKIPIF1<0,可得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.2.(2020浙江11)已知數列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.【答案】10【思路導引】根據通項公式可求出數列SKIPIF1<0的前三項,即可求出.【解析】由題意可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案為:10.3.(2020山東14)將數列SKIPIF1<0與SKIPIF1<0的公共項從小到大排列得到數列SKIPIF1<0,則SKIPIF1<0的前SKIPIF1<0項和為.【答案】SKIPIF1<0【思路導引】首先判斷出數列SKIPIF1<0與SKIPIF1<0項的特征,從而判斷出兩個數列公共項所構成新數列的首項以及公差,利用等差數列的求和公式求得結果.【解析】因為數列SKIPIF1<0是以1為首項,以2為公差的等差數列,數列SKIPIF1<0是以1首項,以3為公差的等差數列,所以這兩個數列的公共項所構成的新數列SKIPIF1<0是以1為首項,以6為公差的等差數列,所以SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,故答案為:SKIPIF1<0.4.(2012新課標,理16)數列{SKIPIF1<0}滿足SKIPIF1<0,則{SKIPIF1<0}的前60項和為.【答案】1830【解析】由題設知,SKIPIF1<0=1,①SKIPIF1<0=3②SKIPIF1<0=5③SKIPIF1<0=7,SKIPIF1<0=9,SKIPIF1<0=11,SKIPIF1<0=13,SKIPIF1<0=15,SKIPIF1<0=17,SKIPIF1<0=19,SKIPIF1<0,……,∴②-①得SKIPIF1<0=2,③+②得SKIPIF1<0=8,同理可得SKIPIF1<0=2,SKIPIF1<0=24,SKIPIF1<0=2,SKIPIF1<0=40,…,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,是各項均為2的常數列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…是首項為8,公差為16的等差數列,∴{SKIPIF1<0}的前60項和為SKIPIF1<0=1830.5.(2020山東18)已知公比大于SKIPIF1<0的等比數列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)記SKIPIF1<0為SKIPIF1<0在區間SKIPIF1<0SKIPIF1<0中的項的個數,求數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【思路導引】(1)利用基本元的思想,將已知條件轉化為SKIPIF1<0的形式,求解出SKIPIF1<0,由此求得數列SKIPIF1<0的通項公式;(2)通過分析數列SKIPIF1<0的規律,由此求得數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【解析】(1)由于數列SKIPIF1<0是公比大于SKIPIF1<0的等比數列,設首項為SKIPIF1<0,公比為SKIPIF1<0,依題意有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以數列SKIPIF1<0的通項公式為SKIPIF1<0.(2)由于SKIPIF1<0,所以SKIPIF1<0對應的區間為:SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0對應的區間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個SKIPIF1<0;SKIPIF1<0對應的區間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個SKIPIF1<0;SKIPIF1<0對應的區間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個SKIPIF1<0;SKIPIF1<0對應的區間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個SKIPIF1<0;SKIPIF1<0對應的區間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個SKIPIF1<0;SKIPIF1<0對應的區間分別為:SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0個SKIPIF1<0.所以SKIPIF1<0.6.(2016?新課標Ⅱ,理17)SKIPIF1<0為等差數列SKIPIF1<0的前SKIPIF1<0項和,且SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,其中SKIPIF1<0表示不超過SKIPIF1<0的最大整數,如SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(Ⅱ)求數列SKIPIF1<0的前1000項和.【解析】(Ⅰ)SKIPIF1<0為等差數列SKIPIF1<0的前SKIPIF1<0項和,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.可得SKIPIF1<0,則公差SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅱ)由(Ⅰ)可知:SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.數列SKIPIF1<0的前1000項和為:SKIPIF1<0.7.(2015湖南)設數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,已知SKIPIF1<0,且SKIPIF1<0SKIPIF1<0.(Ⅰ)證明:SKIPIF1<0;(Ⅱ)求SKIPIF1<0.【解析】(Ⅰ)由條件,對任意,有SKIPIF1<0SKIPIF1<0,因而對任意,有SKIPIF1<0SKIPIF1<0,兩式相減,得,即,又,所以,故對一切,.(Ⅱ)由(Ⅰ)知,,所以,于是數列是首項,公比為3的等比數列,數列是首項,公比為3的等比數列,所以,于是.從而,綜上所述,8.(2013安徽)設數列滿足,,且對任意,函數,滿足(Ⅰ)求數列的通項公式;(Ⅱ)若,求數列的前項和.【解析】(Ⅰ)由,SKIPIF1<0SKIPIF1<0所以,∴SKIPIF1<0是等差數列.而,,,,(Ⅱ)考點62裂項相消法求和1.(2020浙江20)已知數列{an},{bn},{cn}中,SKIPIF1<0.(Ⅰ)若數列{bn}為等比數列,且公比SKIPIF1<0,且SKIPIF1<0,求q與an的通項公式;(Ⅱ)若數列{bn}為等差數列,且公差SKIPIF1<0,證明:SKIPIF1<0.【答案】(I)SKIPIF1<0;(II)證明見解析【思路導引】(I)根據SKIPIF1<0,求得SKIPIF1<0,進而求得數列SKIPIF1<0的通項公式,利用累加法求得數列SKIPIF1<0的通項公式.(II)利用累乘法求得數列SKIPIF1<0的表達式,結合裂項求和法證得不等式成立.【解析】(I)依題意SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,∴解得SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,故SKIPIF1<0,∴數列SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數列,∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0,故SKIPIF1<0(SKIPIF1<0).∴SKIPIF1<0SKIPIF1<0SKIPIF1<0.(II)依題意設SKIPIF1<0,由于SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0.由于SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.2.(2017?新課標Ⅱ,理15)等差數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】等差數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,數列的首項為1,公差為1,∴SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0.3.(2017?新課標Ⅲ,文17)設數列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)求數列SKIPIF1<0的前SKIPIF1<0項和.【解析】(1)數列SKIPIF1<0滿足SKIPIF1<0.SKIPIF1<0時,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,上式也成立.SKIPIF1<0.(2)SKIPIF1<0.SKIPIF1<0數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.4.(2015新課標Ⅰ,理17)SKIPIF1<0為數列{SKIPIF1<0}的前n項和.已知SKIPIF1<0>0,SKIPIF1<0=QUOTESKIPIF1<0.(Ⅰ)求{SKIPIF1<0}的通項公式:(Ⅱ)設,求數列}的前n項和【解析】(Ⅰ)當SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0=3,當SKIPIF1<0時,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0=2,所以數列{SKIPIF1<0}是首項為3,公差為2的等差數列,所以SKIPIF1<0=SKIPIF1<0;(Ⅱ)由(Ⅰ)知,SKIPIF1<0=SKIPIF1<0,所以數列{SKIPIF1<0}前n項和為SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.5.(2013新課標Ⅰ,文17)已知等差數列{SKIPIF1<0}的前n項和SKIPIF1<0滿足SKIPIF1<0=0,SKIPIF1<0=-5.(Ⅰ)求{SKIPIF1<0}的通項公式;(Ⅱ)求數列{SKIPIF1<0}的前n項和.【解析】(Ⅰ)由SKIPIF1<0=0,SKIPIF1<0=-5得,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0=1,SKIPIF1<0=-1,∴SKIPIF1<0=SKIPIF1<0;(Ⅱ)由已知SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴數列{SKIPIF1<0}的前n項和為SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.6.(2011新課標,理17)等比數列{SKIPIF1<0}的各項均為整數,且SKIPIF1<0=1,SKIPIF1<0=SKIPIF1<0,(Ⅰ)求數列{SKIPIF1<0}的通項公式;(Ⅱ)設SKIPIF1<0=SKIPIF1<0,求數列{SKIPIF1<0}的前SKIPIF1<0項和.【解析】(Ⅰ)設數列{SKIPIF1<0}的公比為SKIPIF1<0,由SKIPIF1<0=SKIPIF1<0得SKIPIF1<0=SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0,由條件可知SKIPIF1<0>0,故SKIPIF1<0=SKIPIF1<0.由SKIPIF1<0=1得SKIPIF1<0=1,所以SKIPIF1<0=SKIPIF1<0,故數列{SKIPIF1<0}的通項公式為SKIPIF1<0=SKIPIF1<0.(Ⅱ)SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0故SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0所以數列{SKIPIF1<0}的前SKIPIF1<0項和為SKIPIF1<0.7.(2016年天津高考)已知SKIPIF1<0是各項均為正數的等差數列,公差為SKIPIF1<0,對任意的SKIPIF1<0,SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中項.(Ⅰ)設SKIPIF1<0,求證:數列SKIPIF1<0是等差數列;(Ⅱ)設SKIPIF1<0,求證:SKIPIF1<0【解析】(Ⅰ)由題意得SKIPIF1<0,有SKIPIF1<0,因此SKIPIF1<0,所以數列SKIPIF1<0是等差數列.(Ⅱ)SKIPIF1<0 SKIPIF1<0SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0.8.(2011安徽)在數1和100之間插入SKIPIF1<0個實數,使得這SKIPIF1<0個數構成遞增的等比數列,將這SKIPIF1<0個數的乘積記作SKIPIF1<0,再令SKIPIF1<0SKIPIF1<0.(Ⅰ)求數列SKIPIF1<0的通項公式;(Ⅱ)設SKIPIF1<0求數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【解析】(Ⅰ)設SKIPIF1<0構成等比數列,其中SKIPIF1<0則SKIPIF1<0①SKIPIF1<0②①×②并利用SKIPIF1<0SKIPIF1<0(Ⅱ)由題意和(Ⅰ)中計算結果,知SKIPIF1<0另一方面,利用SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0SKIPIF1<09.(2014山東)已知等差數列SKIPIF1<0的公差為2,前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數列.(Ⅰ)求數列SKIPIF1<0的通項公式;(Ⅱ)令SKIPIF1<0=SKIPIF1<0求數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【解析】(Ⅰ)SKIPIF1<0解得SKIPIF1<0(Ⅱ)SKIPIF1<0,當SKIPIF1<0為偶數時SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.10.(2013廣東)設各項均為正數的數列的前項和為,滿足SKIPIF1<0,SKIPIF1<0,且構成等比數列.(Ⅰ)證明:;(Ⅱ)求數列的通項公式;(Ⅲ)證明:對一切正整數,有.【解析】(Ⅰ)當時,,(Ⅱ)當時,,,當時,是公差的等差數列.構成等比數列,,,解得,由(Ⅰ)可知,是首項,公差的等差數列.數列的通項公式為.(Ⅲ)考點63錯位相減法1.(2020全國Ⅲ理17)設等差數列SKIPIF1<0滿足SKIPIF1<0.(1)計算SKIPIF1<0,猜想SKIPIF1<0的通項公式并加以證明;(2)求數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【思路導引】(1)利用遞推公式得出SKIPIF1<0,猜想得出SKIPIF1<0的通項公式,利用數學歸納法證明即可;(2)由錯位相減法求解即可.【解析】(1)由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…猜想SKIPIF1<0的通項公式為SKIPIF1<0.證明如下:(數學歸納法)當SKIPIF1<0時,顯然成立;(1)假設SKIPIF1<0時,即SKIPIF1<0成立;其中SKIPIF1<0,由SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)故假設成立,綜上(1)(2),∴SKIPIF1<0SKIPIF1<0(2)解法一:令SKIPIF1<0,則前項和SKIPIF1<0(1)由(1)兩邊同乘以2得:SKIPIF1<0(2)由(1)SKIPIF1<0(2)的SKIPIF1<0,化簡得SKIPIF1<0.解法二:由(1)可知,SKIPIF1<0SKIPIF1<0,①SKIPIF1<0,②由①SKIPIF1<0②得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.2.(2014新課標I,文17)已知{SKIPIF1<0}是遞增的等差數列,SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的根。(=1\*ROMANI)求{SKIPIF1<0}的通項公式;(=2\*ROMANII)求數列{SKIPIF1<0}的前SKIPIF1<0項和.【解析】(=1\*ROMANI)設數列{SKIPIF1<0}的公差為SKIPIF1<0,方程SKIPIF1<0兩根為2,3,由題得SKIPIF1<0=2,SKIPIF1<0=3,在SKIPIF1<0-SKIPIF1<0=2SKIPIF1<0,故SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∴數列{SKIPIF1<0}的通項公式為SKIPIF1<0=SKIPIF1<0.……6分(=2\*ROMANII)設數列{SKIPIF1<0}的前SKIPIF1<0項和為SKIPIF1<0,由(=1\*ROMANI)知,SKIPIF1<0=SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0,①SKIPIF1<0=SKIPIF1<0,②①-②得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0.……12分3.(2015浙江)已知數列SKIPIF1<0和SKIPIF1<0滿足,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(Ⅰ)求SKIPIF1<0與SKIPIF1<0;(Ⅱ)記數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,求SKIPIF1<0.【解析】(Ⅰ)由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0故SKIPIF1<0.當SKIPIF1<0SKIPIF1<0時,SKIPIF1<0整理得SKIPIF1<0所以SKIPIF1<0.(Ⅱ)由(Ⅰ)知,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.4.(2013湖南)設為數列{}的前項和,已知,2,N(Ⅰ)求,,并求數列的通項公式;(Ⅱ)求數列{}的前項和.【解析】(Ⅰ)SKIPIF1<0SKIPIF1<0SKIPIF1<0-SKIPIF1<0(Ⅱ)SKIPIF1<0SKIPIF1<0上式左右錯位相減:SKIPIF1<0SKIPIF1<0。5.(2016年山東高考)已知數列的前n項和SKIPIF1<0,是等差數列,且(Ⅰ)求數列的通項公式;(Ⅱ)令求數列的前n項和Tn.【解析】(Ⅰ)因為數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0對SKIPIF1<0也成立,所以SKIPIF1<0.又因為SKIPIF1<0是等差數列,設公差為SKIPIF1<0,則SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,所以數列SKIPIF1<0的通項公式為SKIPIF1<0.(Ⅱ)由SKIPIF1<0,于是SKIPIF1<0,兩邊同乘以2,得SKIPIF1<0,兩式相減,得SKIPIF1<0SKIPIF1<0SKIPIF1<0.6.(2015湖北)設等差數列SKIPIF1<0的公差為SKIPIF1<0,前SKIPIF1<0項和為SKIPIF1<0,等比數列SKIPIF1<0的公比為SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求數列SKIPIF1<0,SKIPIF1<0的通項公式;(Ⅱ)當SKIPIF1<0時,記SKIPIF1<0,求數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【解析】(Ⅰ)由題意有,SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.(Ⅱ)由SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,于是SKIPIF1<0,①SKIPIF1<0.②①-②可得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.7.(2013山東)設等差數列的前項和為,且,.(Ⅰ)求數列的通項公式;(Ⅱ)設數列的前項和,且(λ為常數),令(SKIPIF1<0).求數列的前項和.【解析】(Ⅰ)設等差數列的首項為SKIPIF1<0,公差為SKIPIF1<0,由,得,解得,,.因此.(Ⅱ)由題意知:所以時,故,所以,則兩式相減得整理得,所以數列的前SKIPIF1<0項和.8.(2017山東)已知SKIPIF1<0是各項均為正數的等比數列,且SKIPIF1<0,SKIPIF1<0.(Ⅰ)求數列SKIPIF1<0的通項公式;(Ⅱ)如圖,在平面直角坐標系SKIPIF1<0中,依次連接點SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0得到折線SKIPIF1<0SKIPIF1<0…SKIPIF1<0,求由該折線與直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所圍成的區域的面積.【解析】(Ⅰ)設數列的公比為SKIPIF1<0,由已知SKIPIF1<0.由題意得,所以,因為SKIPIF1<0,所以,因此數列的通項公式為(Ⅱ)過…,向軸作垂線,垂足分別為…,,由(Ⅰ)得記梯形的面積為.由題意,所以…+=…+①又…+②①SKIPIF1<0②得=所以9.(2017天津)已知SKIPIF1<0為等差數列,前n項和為SKIPIF1<0,SKIPIF1<0是首項為2的等比數列,且公比大于0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0和SKIPIF1<0的通項公式;(Ⅱ)求數列SKIPIF1<0的前n項和SKIPIF1<0.【解析】(Ⅰ)設等差數列SKIPIF1<0的公差為SKIPIF1<0,等比數列SKIPIF1<0的公比為SKIPIF1<0.由已知SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.又因為SKIPIF1<0,解得SKIPIF1<0.所以,SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0①.由SKIPIF1<0,可得SKIPIF1<0②,聯立①②,解得SKIPIF1<0,SKIPIF1<0,由此可得SKIPIF1<0.所以,數列SKIPIF1<0的通項公式為SKIPIF1<0,數列SKIPIF1<0的通項公式為SKIPIF1<0.(Ⅱ)設數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,上述兩式相減,得SKIPIF1<0SKIPIF1<0得SKIPIF1<0.所以,數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0.10.(2015湖北)設等差數列SKIPIF1<0的公差為d,前n項和為SKIPIF1<0,等比數列SKIPIF1<0的公比為q.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求數列SKIPIF1<0,SKIPIF1<0的通項公式;(Ⅱ)當SKIPIF1<0時,記SKIPIF1<0,求數列SKIPIF1<0的前n項和SKIPIF1<0.【解析】(Ⅰ)由題意有,SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.(Ⅱ)由SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,于是SKIPIF1<0,①SKIPIF1<0.②①-②可得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.11.(2014四川)設等差數列SKIPIF1<0的公差為SKIPIF1<0,點SKIPIF1<0在函數SKIPIF1<0的圖象上(SKIPIF1<0).(Ⅰ)若SKIPIF1<0,點SKIPIF1<0在函數SKIPIF1<0的圖象上,求數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0;(Ⅱ)若SKIPIF1<0,函數SKIPIF1<0的圖象在點SKIPIF1<0處的切線在SKIPIF1<0軸上的截距為SKIPIF1<0,求數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【解析】(Ⅰ)點SKIPIF1<0在函數SKIPIF1<0的圖象上,所以SKIPIF1<0,又等差數列SKIPIF1<0的公差為SKIPIF1<0,所以SKIPIF1<0.因為點SKIPIF1<0在函數SKIPIF1<0的圖象上,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.(Ⅱ)由SKIPIF1<0,函數SKIPIF1<0的圖象在點SKIPIF1<0處的切線方程為SKIPIF1<0所以切線在SKIPIF1<0軸上的截距為SKIPIF1<0,從而SKIPIF1<0,故SKIPIF1<0從而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0故SKIPIF1<0.12.(2012浙江)已知數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0=,n∈N﹡,數列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0;(Ⅱ)求數列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【解析】(Ⅰ)由SKIPIF1<0=,得當SKIPIF1<0=1時,;當SKIPIF1<02時,,SKIPIF1<0.由SKIPIF1<0,得,SKIPIF1<0.(Ⅱ)由(1)知,SKIPIF1<0所以,,,SKIPIF1<0.考點64并項法與倒序求和法1.(2011安徽)若數列的通項公式是SKIPIF1<0,則SKIPIF1<0=A.15B.12C.-12D.-15【答案】A【解析】SKIPIF1<0SKIPIF1<0.考點65數列綜合問題1.(2017?新課標Ⅰ,理12)幾位大學生響應國家的創業號召,開發了一款應用軟件.為激發大家學習數學的興趣,他們推出了“解數學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數學問題的答案:已知數列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,SKIPIF1<0,其中第一項是SKIPIF1<0,接下來的兩項是SKIPIF1<0,SKIPIF1<0,再接下來的三項是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,依此類推.求滿足如下條件的最小整數SKIPIF1<0且該數列的前SKIPIF1<0項和為2的整數冪.那么該款軟件的激活碼是SKIPIF1<0SKIPIF1<0A.440 B.330 C.220 D.110【解析】設該數列為SKIPIF1<0,設SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由題意可設數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0,可知當SKIPIF1<0為SKIPIF1<0時SKIPIF1<0,數列SKIPIF1<0的前SKIPIF1<0項和為數列SKIPIF1<0的前SKIPIF1<0項和,即為SKIPIF1<0,容易得到SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0項,由SKIPIF1<0,SKIPIF1<0,可知SKIPIF1<0,故SKIPIF1<0項符合題意.SKIPIF1<0項,仿上可知SKIPIF1<0,可知SKIPIF1<0,顯然不為2的整數冪,故SKIPIF1<0項不符合題意.SKIPIF1<0項,仿上可知SKIPIF1<0,可知SKIPIF1<0,顯然不為2的整數冪,故SKIPIF1<0項不符合題意.SKIPIF1<0項,仿上可知SKIPIF1<0,可知SKIPIF1<0,顯然不為2的整數冪,故SKIPIF1<0項不符合題意.故選SKIPIF1<0.2.(2016?新課標Ⅲ,理12)定義“規范01數列”SKIPIF1<0如下:SKIPIF1<0共有SKIPIF1<0項,其中SKIPIF1<0項為0,SKIPIF1<0項為1,且對任意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中0的個數不少于1的個數,若SKIPIF1<0,則不同的“規范01數列”共有SKIPIF1<0SKIPIF1<0A.18個 B.16個 C.14個 D.12個【答案】C【解析】由題意可知,“規范01數列”有偶數項SKIPIF1<0項,且所含0與1的個數相等,首項為0,末項為1,若SKIPIF1<0,說明數列有8項,滿足條件的數列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14個,故選SKIPIF1<0.3.(2013新課標Ⅰ,理12)設△AnBnCn的三邊長分別為an,bn,cn,△AnBnCn的面積為Sn,n=1,2,3,…若b1>c1,b1+c1=2a1,an+1=an,bn+1=eq\f(cn+an,2),cn+1=eq\f(bn+an,2),則( )A.{Sn}為遞減數列 B。{Sn}為遞增數列QUOTE C.{S2n-1}為遞增數列,{S2n}為遞減數列D.{S2n-1}為遞減數列,{S2n}為遞增數列 【答案】B【解析】∵SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0+SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0+SKIPIF1<0-SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,由余弦定理得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0>SKIPIF1<0(∵SKIPIF1<0),∴SKIPIF1<0>SKIPIF1<0,故SKIPIF1<0為遞增數列,故選B.4.(2019浙江10)設a,b∈R,數列{an}中an=a,an+1=an2+b,,則A.當b=時,a10>10 B.當b=時,a10>10 C.當b=-2時,a10>10 D.當b=-4時,a10>10【答案】A【解析】對于B,令QUOTEx2-λ+14=0,得QUOTEλ=12,

取QUOTEa1=12,所以QUOTE∴a2=12,…,an=12<10,

所以QUOTE∴當QUOTEb=14時,QUOTEa10<10,故B錯誤;

對于C,令QUOTEx2-λ-2=0,得QUOTEλ=2或QUOTEλ=-1,

取QUOTEa1=2,所以QUOTE∴a2=2,所以QUOTE∴當QUOTEb=-2時,QUOTEa10<10,故C錯誤;

對于D,令QUOTEx2-λ-4=0,得QUOTEλ=1±172,取QUOTEa1=1+172,所以QUOTE∴a2=1+172,QUOTE……,QUOTEan=1+172<10,

所以當QUOTEb=-4時,QUOTEa10<10,故D錯誤;

對于A,QUOTEa2=a2+12≥12,QUOTEa3=(a2+12)2+12≥34,QUOTEa4=(a4+a2+34)2+12≥916+12=1716>1,

QUOTEan+1-an>0,QUOTE{an}遞增,當QUOTEn≥4時,QUOTEan+1an=an+12an>1+12=32,所以QUOTE∴a5a4>32a4a5>32???a10a9>32,所以QUOTE∴a10a4>(32)6,所以QUOTE∴a10>72964>10.故A正確.故選A.5.(2015湖北)設SKIPIF1<0,SKIPIF1<0.若p:SKIPIF1<0成等比數列;q:SKIPIF1<0SKIPIF1<0,則A.p是q的充分條件,但不是q的必要條件B.p是q的必要條件,但不是q的充分條件C.p是q的充分必要條件D.p既不是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論