




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知平行四邊形對角線與交于點,設,,則()A. B. C. D.2.在ΔABC中,角A、B、C所對的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.223.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)4.設偶函數(shù)定義在上,其導數(shù)為,當時,,則不等式的解集為()A. B.C. D.5.橢圓以軸和軸為對稱軸,經(jīng)過點(2,0),長軸長是短軸長的2倍,則橢圓的方程為()A. B.C.或 D.或6..設、是關(guān)于x的方程的兩個不相等的實數(shù)根,那么過兩點,的直線與圓的位置關(guān)系是()A.相離. B.相切. C.相交. D.隨m的變化而變化.7.某校高一甲、乙兩位同學的九科成績?nèi)缜o葉圖所示,則下列說法正確的是()A.甲、乙兩人的各科平均分不同 B.甲、乙兩人的中位數(shù)相同C.甲各科成績比乙各科成績穩(wěn)定 D.甲的眾數(shù)是83,乙的眾數(shù)為878.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.9.在中,,,,則的面積是()A. B. C.或 D.或10.若點共線,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列的前項和,則的通項公式_____.12.的值域是______.13.把二進制數(shù)化為十進制數(shù)是:______.14.若關(guān)于的不等式有解,則實數(shù)的取值范圍為________.15.若點,是圓C:上不同的兩點,且,則的值為______.16.給出下列五個命題:①函數(shù)的一條對稱軸是;②函數(shù)的圖象關(guān)于點(,0)對稱;③正弦函數(shù)在第一象限為增函數(shù);④若,則,其中;⑤函數(shù)的圖像與直線有且僅有兩個不同的交點,則的取值范圍為.以上五個命題中正確的有(填寫所有正確命題的序號)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設數(shù)列是等差數(shù)列,其前n項和為;數(shù)列是等比數(shù)列,公比大于0,其前項和為.已知,,,.(1)求數(shù)列和數(shù)列的通項公式;(2)設數(shù)列的前n項和為,若對任意的恒成立,求實數(shù)m的取值范圍.18.在中,角,,所對的邊分別為,,,.(1)求角的大小;(2)若,的面積為,求及的值.19.已知的三個內(nèi)角的對邊分別是,且.(1)求角的大小;(2)若的面積為,求的周長.20.已知,,且.(1)求函數(shù)的最小正周期;(2)若用和分別表示函數(shù)W的最大值和最小值.當時,求的值.21.已知.(1)求函數(shù)的最小正周期;(2)求函數(shù)在閉區(qū)間上的最小值并求當取最小值時,的取值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)向量減法的三角形法則和數(shù)乘運算直接可得結(jié)果.【詳解】本題正確選項:【點睛】本題考查向量的線性運算問題,涉及到向量的減法和數(shù)乘運算的應用,屬于基礎(chǔ)題.2、C【解析】
利用正弦定理得到答案.【詳解】asin故答案選C【點睛】本題考查了正弦定理,意在考查學生的計算能力.3、A【解析】
由題意可得,,求解即可.【詳解】,解得或,故解集為(-,0)(1,+),故選A.【點睛】本題考查了分式不等式的解法,考查了計算能力,屬于基礎(chǔ)題.4、C【解析】構(gòu)造函數(shù),則,所以當時,,單調(diào)遞減,又在定義域內(nèi)為偶函數(shù),所以在區(qū)間單調(diào)遞增,單調(diào)遞減,又等價于,所以解集為.故選C.點睛:本題考查導數(shù)的構(gòu)造法應用.本題中,由條件構(gòu)造函數(shù),結(jié)合函數(shù)性質(zhì),可得抽象函數(shù)在區(qū)間單調(diào)遞增,單調(diào)遞減,結(jié)合函數(shù)草圖,即可解得不等式解集.5、C【解析】
由于橢圓長軸長是短軸長的2倍,即,又橢圓經(jīng)過點(2,0),分類討論,即可求解.【詳解】由于橢圓長軸長是短軸長的2倍,即,又橢圓經(jīng)過點(2,0),則若焦點在x軸上,則,,橢圓方程為;若焦點在y軸上,則,,橢圓方程為,故選C.【點睛】本題主要考查了橢圓的方程的求解,其中解答中熟記橢圓的標準方程的形式,合理分類討論是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、D【解析】直線AB的方程為.即,所以直線AB的方程為,因為,所以,所以,所以直線AB與圓可能相交,也可能相切,也可能相離.7、C【解析】
分別計算出甲、乙兩位同學成績的平均分、中位數(shù)、眾數(shù),由此確定正確選項.【詳解】甲的平均分為,乙的平均分,兩人平均分相同,故A選項錯誤.甲的中位數(shù)為,乙的中位數(shù)為,兩人中位數(shù)不相同,故B選項錯誤.甲的眾數(shù)是,乙的眾數(shù)是,故D選項錯誤.所以正確的答案為C.由莖葉圖可知,甲的數(shù)據(jù)比較集中,乙的數(shù)據(jù)比較分散,所以甲比較穩(wěn)定.(因為方差運算量特別大,故不需要計算出方差.)故選:C【點睛】本小題主要考查根據(jù)莖葉圖比較平均數(shù)、中位數(shù)、眾數(shù)、方差,屬于基礎(chǔ)題.8、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點:由圖象確定函數(shù)解析式.9、C【解析】
先根據(jù)正弦定理求出角,從而求出角,再根據(jù)三角形的面積公式進行求解即可.【詳解】解:由,,,根據(jù)正弦定理得:,為三角形的內(nèi)角,或,或在中,由,,或則面積或.故選C.【點睛】本題主要考查了正弦定理,三角形的面積公式以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵,屬于中檔題.10、A【解析】
通過三點共線轉(zhuǎn)化為向量共線,即可得到答案.【詳解】由題意,可知,又,點共線,則,即,所以,故選A.【點睛】本題主要考查三點共線的條件,難度較小.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)和之間的關(guān)系,應用公式得出結(jié)果【詳解】當時,;當時,;∴故答案為【點睛】本題考查了和之間的關(guān)系式,注意當和時要分開討論,題中的數(shù)列非等差數(shù)列.本題屬于基礎(chǔ)題12、【解析】
對進行整理,得到正弦型函數(shù),然后得到其值域,得到答案.【詳解】,因為所以的值域為.故答案為:【點睛】本題考查輔助角公式,正弦型函數(shù)的值域,屬于簡單題.13、51【解析】110011(2)14、【解析】
利用判別式可求實數(shù)的取值范圍.【詳解】不等式有解等價于有解,所以,故或,填.【點睛】本題考查一元二次不等式有解問題,屬于基礎(chǔ)題.15、【解析】
由,再結(jié)合坐標運算即可得解.【詳解】解:因為點,是圓C:上不同的兩點,則,,又所以,即,故答案為:.【點睛】本題考查了向量模的運算,重點考查了運算能力,屬基礎(chǔ)題.16、①②⑤【解析】試題分析:①將代入可得函數(shù)最大值,為函數(shù)對稱軸;②函數(shù)的圖象關(guān)于點對稱,包括點;③,③錯誤;④利用誘導公式,可得不同于的表達式;⑤對進行討論,利用正弦函數(shù)圖象,得出函數(shù)與直線僅有有兩個不同的交點,則.故本題答案應填①②⑤.考點:三角函數(shù)的性質(zhì).【知識點睛】本題主要考查三角函數(shù)的圖象性質(zhì).對于和的最小正周期為.若為偶函數(shù),則當時函數(shù)取得最值,若為奇函數(shù),則當時,.若要求的對稱軸,只要令,求.若要求的對稱中心的橫坐標,只要令即可.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);;(2)【解析】
(1)根據(jù)等比數(shù)列與等差數(shù)列,分別設公比與公差再用基本量法求解即可.(2)由(1)有再錯位相減求解,利用不等式恒成立的方法求解即可.【詳解】解:(1)設等比數(shù)列的公比為q,由,,可得.∵,可得.故;設等差數(shù)列的公差為d,由,得,由,得,∴.故;(2)根據(jù)題意知,①②①—②得∴,對任意的恒成立,∴【點睛】本題主要考查了等差等比數(shù)列的基本量求解方法以及錯位相減和不等式恒成立的問題.屬于中檔題.18、(1)(2),【解析】
(1)化簡等式,即可求出角.(2)利用角C的余弦公式,求出c與a的關(guān)系式,再由正弦定理求出角A的正弦值,再結(jié)合面積公式求出c的值.【詳解】(1)∵,∴,即,∴.又,∴.(2)∵,∴,即,∴.∵,且,∴,∴,由正弦定理得,解得.【點睛】本題考查利用解三角形,屬于基礎(chǔ)題.19、(1);(2)【解析】
(1)通過正弦定理得,進而求出,再根據(jù),進而求得的大小;(2)由正弦定理中的三角形面積公式求出,再根據(jù)余弦定理,求得,進而求得的周長.【詳解】(1)由題意知,由正弦定理得,又由,則,所以,又因為,則,所以.(2)由三角形的面積公式,可得,解得,又因為,解得,即,所以,所以的周長為【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應用,其中在解有關(guān)三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.20、(1);(2).【解析】
(1)根據(jù)向量數(shù)量積的計算公式和三角恒等變換公式可將化簡為,進而求得函數(shù)的最小正周期;(2)由可求得的范圍,進而可求得的最大值和最小值,最后得解.【詳解】(1)∴;(2),,,∴當時,,當時,,∴.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 睡蓮丙烯兒童畫課件
- 怎樣進行外科補液治療講課件
- 2024年節(jié)能型電冰箱、空調(diào)器資金籌措計劃書代可行性研究報告
- 抽水蓄能電站職業(yè)病危害評價
- 著裝規(guī)范班會課件
- 重慶經(jīng)貿(mào)職業(yè)學院《醫(yī)學實驗設計》2023-2024學年第二學期期末試卷
- 在線教育平臺助力學生全面發(fā)展案例與實踐分析
- 教育技術(shù)的新篇章個性化學習平臺的崛起及影響
- 智慧城市辦公空間規(guī)劃及建設方案
- 廣西工程職業(yè)學院《中國美術(shù)史》2023-2024學年第二學期期末試卷
- 皮膚科進修心得分享
- 2025年上半年廣東省廣州市白云區(qū)委宣傳部政府雇員招聘5人重點基礎(chǔ)提升(共500題)附帶答案詳解
- 項目經(jīng)理講安全課件
- 《休閑農(nóng)業(yè)》課件 項目二 休閑農(nóng)業(yè)分類及模式分析
- 2025年安徽省省情試題及答案
- 2025年消控室考核試題及答案
- 江西省吉安市遂川縣2024-2025學年數(shù)學三下期末達標檢測試題含解析
- 衛(wèi)健系統(tǒng)2025年上半年安全生產(chǎn)工作總結(jié)
- EPC項目-總體實施方案
- 第一章體育與健康基礎(chǔ)知識 第一節(jié) 科學發(fā)展體能 課件 2024-2025學年人教版初中體育與健康八年級全一冊
- 高三數(shù)學復習策略
評論
0/150
提交評論