




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在如圖所示的數軸上,點B與點C關于點A對稱,A、B兩點對應的實數分別是和﹣1,則點C所對應的實數是()A.1+ B.2+ C.2﹣1 D.2+12.安徽省在一次精準扶貧工作中,共投入資金4670000元,將4670000用科學記數法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1073.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數的概率是()A. B. C. D.4.2018年1月,“墨子號”量子衛星實現了距離達7600千米的洲際量子密鑰分發,這標志著“墨子號”具備了洲際量子保密通信的能力.數字7600用科學記數法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×1025.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數為()A.32° B.30° C.26° D.13°6.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數最多為()A.7 B.8 C.9 D.107.在平面直角坐標系xOy中,四條拋物線如圖所示,其解析式中的二次項系數一定小于1的是()A.y1 B.y2 C.y3 D.y48.某班7名女生的體重(單位:kg)分別是35、37、38、40、42、42、74,這組數據的眾數是()A.74 B.44 C.42 D.409.已知一次函數y=﹣2x+3,當0≤x≤5時,函數y的最大值是()A.0B.3C.﹣3D.﹣710.一元二次方程x2+x﹣2=0的根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.只有一個實數根 D.沒有實數根二、填空題(共7小題,每小題3分,滿分21分)11.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點)15的處,則小明的影子的長為________.12.有一枚質地均勻的骰子,六個面分別表有1到6的點數,任意將它拋擲兩次,并將兩次朝上面的點數相加,則其和小于6的概率是______.13.若順次連接四邊形ABCD四邊中點所得的四邊形是矩形,則原四邊形的對角線AC、BD所滿足的條件是_____.14.在2018年幫助居民累計節約用水305000噸,將數字305000用科學記數法表示為_____.15.若向北走5km記作﹣5km,則+10km的含義是_____.16.關于的一元二次方程有兩個相等的實數根,則________.17.計算a3÷a2?a的結果等于_____.三、解答題(共7小題,滿分69分)18.(10分)(1)問題發現如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數.(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數量關系以及PB與CD之間的數量關系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.19.(5分)為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績為(分),且,將其按分數段分為五組,繪制出以下不完整表格:組別
成績(分)
頻數(人數)
頻率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
請根據表格提供的信息,解答以下問題:(1)本次決賽共有名學生參加;(2)直接寫出表中a=,b=;(3)請補全下面相應的頻數分布直方圖;(4)若決賽成績不低于80分為優秀,則本次大賽的優秀率為.20.(8分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長是4,求線段BF的長?21.(10分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉270°后得到扇形COD,AP,BQ分別切優弧CD于點P,Q,且點P,Q在AB異側,連接OP.求證:AP=BQ;當BQ=時,求的長(結果保留);若△APO的外心在扇形COD的內部,求OC的取值范圍.22.(10分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;23.(12分)計算:;解方程:24.(14分)先化簡,再求值:,且x為滿足﹣3<x<2的整數.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
設點C所對應的實數是x.根據中心對稱的性質,對稱點到對稱中心的距離相等,則有,解得.故選D.2、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將4670000用科學記數法表示為4.67×106,故選B.【點睛】本題考查了科學記數法—表示較大的數,解題的關鍵是掌握科學記數法的概念進行解答.3、D【解析】分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.詳解:∵共6個數,大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.4、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、A【解析】
連接OB,根據切線的性質和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質可得∠C=∠OBC,根據三角形外角的性質即可求得∠ACB的度數.【詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點睛】本題考查了切線的性質,利用切線的性質,結合三角形外角的性質求出角的度數是解決本題的關鍵.6、C【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現了對空間想象能力的考查.7、A【解析】
由圖象的點的坐標,根據待定系數法求得解析式即可判定.【詳解】由圖象可知:拋物線y1的頂點為(-2,-2),與y軸的交點為(0,1),根據待定系數法求得y1=(x+2)2-2;拋物線y2的頂點為(0,-1),與x軸的一個交點為(1,0),根據待定系數法求得y2=x2-1;拋物線y3的頂點為(1,1),與y軸的交點為(0,2),根據待定系數法求得y3=(x-1)2+1;拋物線y4的頂點為(1,-3),與y軸的交點為(0,-1),根據待定系數法求得y4=2(x-1)2-3;綜上,解析式中的二次項系數一定小于1的是y1故選A.【點睛】本題考查了二次函數的圖象,二次函數的性質以及待定系數法求二次函數的解析式,根據點的坐標求得解析式是解題的關鍵.8、C【解析】試題分析:眾數是這組數據中出現次數最多的數據,在這組數據中42出現次數最多,故選C.考點:眾數.9、B【解析】【分析】由于一次函數y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內函數值的最大值.【詳解】∵一次函數y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內,x=0時,函數值最大﹣2×0+3=3,故選B.【點睛】本題考查了一次函數y=kx+b的圖象的性質:①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減小.10、A【解析】∵?=12-4×1×(-2)=9>0,∴方程有兩個不相等的實數根.故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】
易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長.【詳解】解:根據題意,易得△MBA∽△MCO,
根據相似三角形的性質可知,即,
解得AM=1m.則小明的影長為1米.
故答案是:1.【點睛】本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長.12、【解析】
列舉出所有情況,看兩個骰子向上的一面的點數和小于6的情況占總情況的多少即可.【詳解】解:列表得:
兩個骰子向上的一面的點數和小于6的有10種,
則其和小于6的概率是,
故答案為:.【點睛】本題考查了列表法與樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件樹狀圖法適用于兩步或兩步以上完成的事件解題時還要注意是放回實驗還是不放回實驗用到的知識點為:概率所求情況數與總情況數之比.13、AC⊥BD【解析】
根據題意畫出相應的圖形,如圖所示,由四邊形EFGH為矩形,根據矩形的四個角為直角得到∠FEH=90°,又EF為三角形ABD的中位線,根據中位線定理得到EF與DB平行,根據兩直線平行,同旁內角互補得到∠EMO=90°,同理根據三角形中位線定理得到EH與AC平行,再根據兩直線平行,同旁內角互補得到∠AOD=90°,根據垂直定義得到AC與BD垂直.【詳解】∵四邊形EFGH是矩形,∴∠FEH=90°,又∵點E、F、分別是AD、AB、各邊的中點,∴EF是三角形ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點E、H分別是AD、CD各邊的中點,∴EH是三角形ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為:AC⊥BD.【點睛】此題考查了矩形的性質,三角形的中位線定理,以及平行線的性質.根據題意畫出圖形并熟練掌握矩形性質及三角形中位線定理是解題關鍵.14、3.05×105【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】305000=3.05×故答案為:3.05×10【點睛】本題考查的知識點是科學記數法—表示較大的數,解題關鍵是熟記科學計數法的表示方法.15、向南走10km【解析】
分析:與北相反的方向是南,由題意,負數表示向北走,則正數就表示向南走,據此得出結論.詳解:∵向北走5km記作﹣5km,∴+10km表示向南走10km.故答案是:向南走10km.點睛:本題考查對相反意義量的認識:在一對具有相反意義的量中,先規定一個為正數,則另一個就要用負數表示.16、-1.【解析】
根據根的判別式計算即可.【詳解】解:依題意得:∵關于的一元二次方程有兩個相等的實數根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點睛】本題考查了一元二次方程根的判別式,當=>0時,方程有兩個不相等的實數根;當==0時,方程有兩個相等的實數根;當=<0時,方程無實數根.17、a1【解析】
根據同底數冪的除法法則和同底數冪乘法法則進行計算即可.【詳解】解:原式=a3﹣1+1=a1.故答案為a1.【點睛】本題考查了同底數冪的乘除法,關鍵是掌握計算法則.三、解答題(共7小題,滿分69分)18、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】
(1)根據已知條件推出△ABP≌△ACD,根據全等三角形的性質得到PB=CD,∠ACD=∠B=45°,于是得到根據已知條件得到△ABC∽△APD,由相似三角形的性質得到,得到ABP∽△CAD,根據相似三角形的性質得到結論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據勾股定理得到根據相似三角形的性質得到,推出△ABP∽△CAD,根據相似三角形的性質即可得到結論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點睛】本題考查了等腰直角三角形的性質,全等三角形的判定和性質,相似三角形的判定和性質,勾股定理,熟練掌握相似三角形的判定和性質是解題的關鍵.19、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.【解析】試題分析:(1)根據第一組別的人數和百分比得出樣本容量;(2)根據樣本容量以及頻數、頻率之間的關系得出a和b的值,(3)根據a的值將圖形補全;(4)根據圖示可得:優秀的人為第四和第五組的人,將兩組的頻數相加乘以100%得出答案.試題解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考點:頻數分布直方圖20、(2)證明見試題解析;(2).【解析】
(2)過點O作OM⊥AB于M,證明OM=圓的半徑OD即可;(2)過點O作ON⊥BE,垂足是N,連接OF,得到四邊形OMBN是矩形,在直角△OBM中利用三角函數求得OM和BM的長,進而求得BN和ON的長,在直角△ONF中利用勾股定理求得NF,則BF即可求解.【詳解】解:(2)過點O作OM⊥AB,垂足是M.∵⊙O與AC相切于點D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等邊三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB與⊙O相切;(2)過點O作ON⊥BE,垂足是N,連接OF.∵O是BC的中點,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四邊形OMBN是矩形,∴ON=BM=2,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=.考點:2.切線的判定與性質;2.勾股定理;3.解直角三角形;4.綜合題.21、(1)詳見解析;(2);(3)4<OC<1.【解析】
(1)連接OQ,由切線性質得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質即可得證.(2)由(1)中全等三角形性質得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據余弦定義可得cosB=,由特殊角的三角函數值可得∠B=30°,∠BOQ=60°,根據直角三角形的性質得OQ=4,結合題意可得∠QOD度數,由弧長公式即可求得答案.(3)由直角三角形性質可得△APO的外心是OA的中點,結合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優弧QD的長=,(3)解:設點M為Rt△APO的外心,則M為OA的中點,
∵OA=1,
∴OM=4,
∴當△APO的外心在扇形COD的內部時,OM<OC,
∴O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣東客運從業資格證考試答題技巧
- 美學培訓課件
- 聚焦病毒因子檢查:2025年版中國藥典《生物制品生產用動物細胞基質制備及質量控制》變化及解讀(二)
- 2025年湖南省中考地理試題(原卷版)
- 書法培訓課件下載
- 委托招商引資協議
- 家長培訓課件模板
- 商業培訓的課件
- 光纖測試培訓課件
- 小學閱讀題目模板及答案
- 安全檢查作業行為規范與專業知識 -改
- 學校信息化建設十五五規劃方案
- 2025年保險專業知識能力測試題及答案
- 小學民法典主題班會教案
- 水利工程隱患排查課件
- 辦公軟件實操試題及詳細答案
- 米粉項目可行性分析報告
- 腰痛中醫護理查房
- 八五普法自查自評情況報告
- 競彩資格考試試題及答案
- esg考試試題及答案
評論
0/150
提交評論