




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海外國(guó)語(yǔ)大學(xué)附中2023年新高三下學(xué)期起點(diǎn)考試數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.2.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要3.已知實(shí)數(shù),則的大小關(guān)系是()A. B. C. D.4.若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)的值為()A.或 B. C. D.或5.的展開(kāi)式中的項(xiàng)的系數(shù)為()A.120 B.80 C.60 D.406.雙曲線(xiàn)的漸近線(xiàn)方程是()A. B. C. D.7.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-38.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.9.若集合,則()A. B.C. D.10.雙曲線(xiàn)的左右焦點(diǎn)為,一條漸近線(xiàn)方程為,過(guò)點(diǎn)且與垂直的直線(xiàn)分別交雙曲線(xiàn)的左支及右支于,滿(mǎn)足,則該雙曲線(xiàn)的離心率為()A. B.3 C. D.211.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H12.已知函數(shù)(表示不超過(guò)x的最大整數(shù)),若有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三對(duì)父子去參加親子活動(dòng),坐在如圖所示的6個(gè)位置上,有且僅有一對(duì)父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).14.對(duì)定義在上的函數(shù),如果同時(shí)滿(mǎn)足以下兩個(gè)條件:(1)對(duì)任意的總有;(2)當(dāng),,時(shí),總有成立.則稱(chēng)函數(shù)稱(chēng)為G函數(shù).若是定義在上G函數(shù),則實(shí)數(shù)a的取值范圍為_(kāi)_______.15.已知函數(shù)的圖象在點(diǎn)處的切線(xiàn)方程是,則的值等于__________.16.如圖,在中,已知,為邊的中點(diǎn).若,垂足為,則的值為_(kāi)_.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為.(1)求曲線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的參數(shù)方程;(2)設(shè)曲線(xiàn)與曲線(xiàn)在第二象限的交點(diǎn)為,曲線(xiàn)與軸的交點(diǎn)為,點(diǎn),求的周長(zhǎng)的最大值.18.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說(shuō)明理由;(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.19.(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,若,且.①求數(shù)列的通項(xiàng)公式;②求證:.20.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(diǎn)(1)求證:平面平面;(2)設(shè)為的中點(diǎn),為上的動(dòng)點(diǎn)(不與重合)求二面角的正切值的最小值21.(12分)在平面直角坐標(biāo)系中,曲線(xiàn),曲線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線(xiàn)、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線(xiàn)與曲線(xiàn),分別交于、兩點(diǎn)(異于極點(diǎn)),定點(diǎn),求的面積22.(10分)已知函數(shù),其中.(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號(hào),結(jié)合排除法可得出正確選項(xiàng).【詳解】令,可得,即函數(shù)的定義域?yàn)椋x域關(guān)于原點(diǎn)對(duì)稱(chēng),,則函數(shù)為奇函數(shù),排除C、D選項(xiàng);當(dāng)時(shí),,,則,排除B選項(xiàng).故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號(hào),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.2、B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出。【詳解】設(shè)對(duì)應(yīng)的集合是,由解得且對(duì)應(yīng)的集合是,所以,故是的必要不充分條件,故選B。【點(diǎn)睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。3、B【解析】
根據(jù),利用指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點(diǎn)睛】本題考查了指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.4、C【解析】試題分析:因?yàn)閺?fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點(diǎn):純虛數(shù)5、A【解析】
化簡(jiǎn)得到,再利用二項(xiàng)式定理展開(kāi)得到答案.【詳解】展開(kāi)式中的項(xiàng)為.故選:【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.6、C【解析】
根據(jù)雙曲線(xiàn)的標(biāo)準(zhǔn)方程即可得出該雙曲線(xiàn)的漸近線(xiàn)方程.【詳解】由題意可知,雙曲線(xiàn)的漸近線(xiàn)方程是.故選:C.【點(diǎn)睛】本題考查雙曲線(xiàn)的漸近線(xiàn)方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的合理運(yùn)用.7、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點(diǎn)睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問(wèn)題,也考查了數(shù)形結(jié)合思想的應(yīng)用問(wèn)題.8、D【解析】
先由是偶函數(shù),得到關(guān)于直線(xiàn)對(duì)稱(chēng);進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線(xiàn)對(duì)稱(chēng);因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對(duì)應(yīng)不等式,熟記函數(shù)的奇偶性、對(duì)稱(chēng)性、單調(diào)性等性質(zhì)即可,屬于常考題型.9、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.10、A【解析】
設(shè),直線(xiàn)的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡(jiǎn)到,得到離心率.【詳解】設(shè),直線(xiàn)的方程為.聯(lián)立整理得,則.因?yàn)椋詾榫€(xiàn)段的中點(diǎn),所以,,整理得,故該雙曲線(xiàn)的離心率.故選:.【點(diǎn)睛】本題考查了雙曲線(xiàn)的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.11、C【解析】
由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡(jiǎn)后可找到其對(duì)應(yīng)的點(diǎn).【詳解】由,所以,對(duì)應(yīng)點(diǎn).故選:C【點(diǎn)睛】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對(duì)就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.12、A【解析】
根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個(gè)不同的交點(diǎn),利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,若有且僅有3個(gè)零點(diǎn),則等價(jià)為有且僅有3個(gè)根,即與有三個(gè)不同的交點(diǎn),作出函數(shù)和的圖象如圖,當(dāng)a=1時(shí),與有無(wú)數(shù)多個(gè)交點(diǎn),當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),即,時(shí),與有兩個(gè)交點(diǎn),當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),即時(shí),與有三個(gè)交點(diǎn),要使與有三個(gè)不同的交點(diǎn),則直線(xiàn)處在過(guò)和之間,即,故選:A.【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解.二、填空題:本題共4小題,每小題5分,共20分。13、192【解析】
根據(jù)題意,分步進(jìn)行分析:①,在三對(duì)父子中任選1對(duì),安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】根據(jù)題意,分步進(jìn)行分析:①,在三對(duì)父子中任選1對(duì),有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對(duì)父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對(duì)父子是相鄰而坐的坐法種;故答案為:【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
由不等式恒成立問(wèn)題采用分離變量最值法:對(duì)任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因?yàn)槭嵌x在上G函數(shù),所以對(duì)任意的總有,則對(duì)任意的恒成立,解得,當(dāng)時(shí),又因?yàn)椋瑫r(shí),總有成立,即恒成立,即恒成立,又此時(shí)的最小值為,即恒成立,又因?yàn)榻獾?故答案為:【點(diǎn)睛】本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學(xué)生分析理解能力,屬于中檔題.15、【解析】
利用導(dǎo)數(shù)的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,要注意在某點(diǎn)的切線(xiàn)與過(guò)某點(diǎn)的切線(xiàn)的區(qū)別,本題屬于基礎(chǔ)題.16、【解析】
,由余弦定理,得,得,,,所以,所以.點(diǎn)睛:本題考查平面向量的綜合應(yīng)用.本題中存在垂直關(guān)系,所以在線(xiàn)性表示的過(guò)程中充分利用垂直關(guān)系,得到,所以本題轉(zhuǎn)化為求長(zhǎng)度,利用余弦定理和面積公式求解即可.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)曲線(xiàn)的直角坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為為參數(shù)(2)【解析】
(1)將代入,可得,所以曲線(xiàn)的直角坐標(biāo)方程為.由可得,將,代入上式,可得,整理可得,所以曲線(xiàn)的參數(shù)方程為為參數(shù).(2)由題可設(shè),,,所以,,,所以,因?yàn)椋裕援?dāng),即時(shí),l取得最大值為,所以的周長(zhǎng)的最大值為.18、(1)見(jiàn)解析;(2)【解析】
(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿(mǎn)足即可,從而得到點(diǎn)E為中點(diǎn);(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積,求解二面角P﹣AE﹣D的余弦值.【詳解】(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在點(diǎn)E為PC中點(diǎn).法二:建立如圖所示的空間直角坐標(biāo)系D-XYZ,由題意知PD=CD=1,,設(shè),,,由,得,即存在點(diǎn)E為PC中點(diǎn).(2)由(1)知,,,,,,設(shè)面ADE的法向量為,面PAE的法向量為由的法向量為得,得,同理求得所以,故所求二面角P-AE-D的余弦值為.【點(diǎn)睛】本題考查二面角的平面角的求法,考查直線(xiàn)與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.19、(1);(2)①;②詳見(jiàn)解析.【解析】
(1)依題意可表示,,相減得,由等比數(shù)列通項(xiàng)公式轉(zhuǎn)化為首項(xiàng)與公比,解得答案,并由其都是正項(xiàng)數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項(xiàng)并整理可得遞推關(guān)系,由等差數(shù)列的通項(xiàng)公式即可得答案;②由已知關(guān)系,表示并相減即可表示遞推關(guān)系,顯然當(dāng)時(shí),成立,當(dāng),時(shí),表示,由分組求和與正項(xiàng)數(shù)列性質(zhì)放縮不等式得證.【詳解】解:(1)依題意可得,,兩式相減,得,所以,因?yàn)椋裕遥獾?(2)①因?yàn)椋裕瑑墒较鄿p,得,即.因?yàn)椋裕?而當(dāng)時(shí),,可得,故,所以對(duì)任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項(xiàng)為1,所以數(shù)列的通項(xiàng)公式為.②因?yàn)椋裕瑑墒较鄿p,得,即,所以對(duì)任意的正整數(shù),都有.令,而當(dāng)時(shí),顯然成立,所以當(dāng),時(shí),,所以,即,所以,得證.【點(diǎn)睛】本題考查由前n項(xiàng)和關(guān)系求等比數(shù)列公比,求等差數(shù)列通項(xiàng)公式,還考查了由分組求和表示數(shù)列和并由正項(xiàng)數(shù)列放縮證明不等式,屬于難題.20、(1)見(jiàn)解析(2)【解析】
(1)推導(dǎo)出,,從而平面,由面面垂直的判定定理即可得證.(2)過(guò)作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時(shí),正切值求得最小值;【詳解】(1)因?yàn)椋妫矫妫矫妫矫妫制矫妫矫嫫矫妫唬?)過(guò)作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則,時(shí)取得最大值,最大值為,則最小值為【點(diǎn)睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問(wèn)題,屬于中檔題.21、(1),;(2).【解析】
(1)先把參數(shù)方程化成普通方程,再利用極坐標(biāo)的公式把普通方程化成極坐標(biāo)方程;(2)先利用極坐標(biāo)求出弦長(zhǎng),再求高,最后求的面積.【詳解】(1)曲線(xiàn)的極坐標(biāo)方程為:,因?yàn)榍€(xiàn)的普通方程為:,曲線(xiàn)的極坐標(biāo)方程為;(2)由(1)得:點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,,點(diǎn)到射線(xiàn)的距離為的面積為.【點(diǎn)睛】本題考查普通方程、參數(shù)方程與極坐標(biāo)方程之間的互化,同時(shí)也考查了利用極坐標(biāo)方程求解面積問(wèn)題,考查計(jì)算能力,屬于中等題.22、(1)時(shí),有一個(gè)零點(diǎn);當(dāng)且時(shí),有兩個(gè)零點(diǎn);(2)見(jiàn)解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年宿州泗縣衛(wèi)健系統(tǒng)縣級(jí)醫(yī)院招聘真題
- 逾期自我檢討書(shū)
- 涉外繼承糾紛分析基礎(chǔ)知識(shí)點(diǎn)歸納
- 社區(qū)大數(shù)據(jù)與社區(qū)信息化政策研究基礎(chǔ)知識(shí)點(diǎn)歸納
- 2025年中考音樂(lè)知識(shí)試題
- 2025圖解《政務(wù)數(shù)據(jù)共享?xiàng)l例》V1.0學(xué)習(xí)解讀
- 資源循環(huán)利用產(chǎn)業(yè)的多元化融資模式與投資吸引力
- 區(qū)域性廢棄物循環(huán)利用項(xiàng)目的可持續(xù)發(fā)展與生態(tài)影響分析
- 醫(yī)療設(shè)備企業(yè)經(jīng)營(yíng)管理方案
- 2025至2030年中國(guó)甲基氨基酮行業(yè)投資前景及策略咨詢(xún)報(bào)告
- (完整版)高考必備3500詞
- GB/T 14832-2008標(biāo)準(zhǔn)彈性體材料與液壓液體的相容性試驗(yàn)
- GB/T 1185-2006光學(xué)零件表面疵病
- GB 29415-2013耐火電纜槽盒
- 熊浩演講稿全
- 2022年寧夏中考物理真題(含答案)
- 怎樣當(dāng)好副職干部課件
- 新疆維吾爾自治區(qū)竣工驗(yàn)收備案表格模板
- 邊坡巡檢記錄表完整優(yōu)秀版
- 《創(chuàng)新與創(chuàng)業(yè)基礎(chǔ)》課程思政優(yōu)秀教學(xué)案例(一等獎(jiǎng))
- 原子熒光分析(汞)原始記錄2
評(píng)論
0/150
提交評(píng)論