




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——線性代數(shù)其次章2
2.1
消元法與矩陣的初等變換
一、消元法解線性方程組分析:用消元法解以下方程組的過程.引例求解線性方程組
2x1x2x3x42,xx2xx4,12344x16x22x32x44,3x16x29x37x49,
12
34
2
(1)
解1232
(1)
x1x22x3x44,2xxxx2,12342x13x2x3x42,3x16x29x37x49,x1x22x3x44,2x2x2x0,2345x25x33x46,3x23x34x43,
12
3412
(B1)
234
32131
34
(B2)
122352432
x1x22x3x44,xxx0,2342x46,x43,x1x22x3x44,xxx0,234x43,00,
12
3412
(B3)
34
423
(B4)
34
用“回代〞的方法求出解:
x1x34于是解得x2x33x34
其中x3為任意取值.
或令x3c,方程組的解可記作x1c4x2c3x,x3c3x41413即xc1003
(2)
其中c為任意常數(shù).
小結(jié):1.上述解方程組的方法稱為消元法.2.始終把方程組看作一個(gè)整體變形,用到如下三種變換(1)交換方程次序;(i與j相互替換)(2)以不等于0的數(shù)乘某個(gè)方程;(以ik替換i)(3)一個(gè)方程加上另一個(gè)方程的k倍.(以ikj替換i)
3.上述三種變換都是可逆的.
若(A)若(A)若(A)
iii
jkkj
(B),則(B)(B),則(B)(B),則(B)i
ii
j
(A);
k(A);kj
(A).
由于三種變換都是可逆的,所以變換前的方程組與變換后的方程組是同解的.故這三種變換是同解變換.
二、矩陣的定義由mn個(gè)數(shù)aiji1,2,,m;j1,2,,n排成的m行n列的數(shù)表a11a21a12a22a1na2n
am1am2amn稱為mn矩陣.簡稱mn矩陣.記作
主對(duì)角線a11
a21Aa副對(duì)角線m1
a12a22am1
a1na2namn
元素行標(biāo)列標(biāo)
簡記為
AAmnaijmnaij.
元素是實(shí)數(shù)的矩陣稱為實(shí)矩陣,元素是復(fù)數(shù)的矩陣稱為復(fù)矩陣.
例如
1035是一個(gè)24實(shí)矩陣,9643124
1362i是一
個(gè)33復(fù)矩陣,222222
2359是一個(gè)14矩陣,
4
是一個(gè)31矩陣,
是一個(gè)11矩陣.
幾種特別矩陣(1)行數(shù)與列數(shù)都等于n的矩陣A,稱為n階方陣.也可記作An.
例如
1362i222222
是一個(gè)3階方陣.
(2)只有一行的矩陣Aa1,a2,,an,稱為行矩陣(或行向量).
只有一列的矩陣
a1a2B,稱為列矩陣(或列向量).an不全為01002形如(3)0O00O0的方陣,稱為對(duì)角矩陣(或?qū)顷?.n
記作
Adiag1,2,,n.
mn零(4)元素全為零的矩陣稱為零矩陣,矩陣記作omn或o.注意例如
不同階數(shù)的零矩陣是不相等的.
0000
0000000000.000000
(5)方陣
1001EEnO00
0O01
全為1
稱為單位矩陣(或單位陣).同型矩陣與矩陣相等的概念
1.兩個(gè)矩陣的行數(shù)相等,列數(shù)相等時(shí),稱為同型矩陣.
12143例如56與84為同型矩陣.37392.兩個(gè)矩陣Aaij與Bbij為同型矩陣,并且對(duì)應(yīng)元素相等,即
aijbiji1,2,,m;j1,2,,n,則稱矩陣A與B相等,記作AB.
三、非齊次線性方程組與矩陣1、線性方程組a11x1a12x2a1nxnb1a21x1a22x2a2nxnb2(2-8)am1x1am2x2amnxnbma11a12a1na11a12記a21a22a21a22a2n,AAaam2m1aaam2mnm1
a1nb1a2nb2amnbm
A稱為方程組(2-8)的系數(shù)矩陣,A稱為增廣矩陣
由于在引例解方程過程中,僅僅只對(duì)方程組的系數(shù)和常數(shù)進(jìn)行運(yùn)算,未知量并未參與運(yùn)算.
若記
11214A(Ab)4622436979
211
12
則對(duì)方程組的變換完全可以轉(zhuǎn)換為對(duì)矩陣A(方程組(2-8)的增廣矩陣)的變換.
四、矩陣的初等變換定義1下面三種變換稱為矩陣的初等行變換:
1對(duì)調(diào)兩行(對(duì)調(diào)i,j兩行,記作rirj);2以數(shù)k0乘以某一行的所有元素;3把某一行所有元素的k倍加到另一行對(duì)應(yīng)的元素上去(第j行的k倍加到第i行上記作rikrj).
(第i行乘k,記作rik)
同
理可定義矩陣的初等列變換(所用記號(hào)是把“r〞換成“c〞).定義2矩陣的初等列變換與初等行變換統(tǒng)稱為初等變換.初等變換的逆變換仍為初等變換,且變換類型一致.
rirj逆變換rirj;1rik逆變換ri()或rik;krikrj逆變換ri(k)rj或rikrj.
假使矩陣A經(jīng)有限次初等變換變成矩陣B,就稱矩陣A與B等價(jià),記作A~B.等價(jià)關(guān)系的性質(zhì):(1)反身性AA;
(2)對(duì)稱性若AB,則BA;(3)傳遞性若AB,BC,則AC.
具有上述三條性質(zhì)的關(guān)系稱為等價(jià).例如,兩個(gè)線性方程組同解,就稱這兩個(gè)線性方程組等價(jià)
例1:用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 增強(qiáng)學(xué)習(xí)動(dòng)力的教育心理技巧
- 從大數(shù)據(jù)角度看學(xué)生心理健康的現(xiàn)狀與趨勢(shì)
- 2025年北師大版小學(xué)五年級(jí)閱讀推廣計(jì)劃
- 物流行業(yè)總經(jīng)理年度工作總結(jié)及計(jì)劃
- 公共衛(wèi)生管理專業(yè)實(shí)習(xí)方案設(shè)計(jì)
- 生鮮食品召回管理及處置程序
- 多媒體輔助初中地理教學(xué)計(jì)劃
- 中小學(xué)歷史教師專業(yè)發(fā)展心得體會(huì)
- 道路建設(shè)中土工合成材料的使用措施
- 中小學(xué)竹笛音樂課程開發(fā)計(jì)劃
- 2024北京西城區(qū)四年級(jí)(下)期末數(shù)學(xué)試題及答案
- 材料力學(xué)第4版單輝祖習(xí)題答案
- 2022年南通如皋市醫(yī)療系統(tǒng)事業(yè)編制鄉(xiāng)村醫(yī)生招聘筆試試題及答案解析
- GB/T 9652.1-2007水輪機(jī)控制系統(tǒng)技術(shù)條件
- 初中英語八下unit默寫手冊(cè)
- 消防控制室值班記錄1
- 考研考博-英語-天津理工大學(xué)考試押題卷含答案詳解4
- T-CASAS 004.2-2018 4H碳化硅襯底及外延層缺陷圖譜
- 法學(xué)本科畢業(yè)論文
- 敏捷項(xiàng)目管理:敏捷革命課件
- 真空斷路器課件
評(píng)論
0/150
提交評(píng)論