廣州市白云區重點名校2023屆中考五模數學試題含解析_第1頁
廣州市白云區重點名校2023屆中考五模數學試題含解析_第2頁
廣州市白云區重點名校2023屆中考五模數學試題含解析_第3頁
廣州市白云區重點名校2023屆中考五模數學試題含解析_第4頁
廣州市白云區重點名校2023屆中考五模數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,朝上一面的數字是偶數的概率為().A. B. C. D.2.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數是()A.30° B.60° C.30°或150° D.60°或120°3.下列幾何體是棱錐的是()A. B. C. D.4.1.在以下綠色食品、回收、節能、節水四個標志中,是軸對稱圖形的是()A. B. C. D.5.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.6.已知y關于x的函數圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<27.某微生物的直徑為0.000005035m,用科學記數法表示該數為()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣58.某工程隊開挖一條480米的隧道,開工后,每天比原計劃多挖20米,結果提前4天完成任務,若設原計劃每天挖米,那么求時所列方程正確的是()A. B.C. D.9.某單位組織職工開展植樹活動,植樹量與人數之間關系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數是4棵C.每人植樹量的中位數是5棵 D.每人植樹量的平均數是5棵10.若拋物線y=kx2﹣2x﹣1與x軸有兩個不同的交點,則k的取值范圍為()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0二、填空題(共7小題,每小題3分,滿分21分)11.按照一定規律排列依次為,…..按此規律,這列數中的第100個數是_____.12.計算的結果是______.13.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,4),頂點C在x軸的負半軸上,函數y=(x<0)的圖象經過頂點B,則k的值為_____.14.分解因式:x2﹣4=_____.15.同時拋擲兩枚質地均勻的骰子,則事件“兩枚骰子的點數和小于8且為偶數”的概率是.16.已知二次函數與一次函數的圖象相交于點,如圖所示,則能使成立的x的取值范圍是______.17.分解因式:a3-12a2+36a=______.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,點C是AB的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且OEEB求證:BD是⊙O的切線;(2)當OB=2時,求BH的長.19.(5分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.20.(8分)先化簡,再求代數式()÷的值,其中a=2sin45°+tan45°.21.(10分)如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結果保留根號)22.(10分)水龍頭關閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據試驗數據繪制出圖②所示的容器內盛水量W(L)與滴水時間t(h)的函數關系圖象,請結合圖象解答下列問題:容器內原有水多少?求W與t之間的函數關系式,并計算在這種滴水狀態下一天的滴水量是多少升?圖①圖②23.(12分)在星期一的第八節課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統計分析,繪制了頻數分布表和統計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統計圖表.等級得分x(分)頻數(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據圖表中的信息完成下列問題:(1)本次抽樣調查的樣本容量是.其中m=,n=.(2)扇形統計圖中,求E等級對應扇形的圓心角α的度數;(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、丁)中,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.24.(14分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點F,如果∠AFE=∠D,求證:.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

朝上的數字為偶數的有3種可能,再根據概率公式即可計算.【詳解】依題意得P(朝上一面的數字是偶數)=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.2、D【解析】【分析】由圖可知,OA=10,OD=1.根據特殊角的三角函數值求出∠AOB的度數,再根據圓周定理求出∠C的度數,再根據圓內接四邊形的性質求出∠E的度數即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對的圓周角的度數是60°或120°,故選D.【點睛】本題考查了圓周角定理、圓內接四邊形的對角互補、解直角三角形的應用等,正確畫出圖形,熟練應用相關知識是解題的關鍵.3、D【解析】分析:根據棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關鍵是根據棱錐的概念判斷.4、D【解析】

根據軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.6、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.7、A【解析】試題分析:0.000005035m,用科學記數法表示該數為5.035×10﹣6,故選A.考點:科學記數法—表示較小的數.8、C【解析】

本題的關鍵描述語是:“提前1天完成任務”;等量關系為:原計劃用時?實際用時=1.【詳解】解:原計劃用時為:,實際用時為:.所列方程為:,故選C.【點睛】本題考查列分式方程,分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.9、D【解析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數是4棵,結論B正確;C、∵共有30個數,第15、16個數為5,∴每人植樹量的中位數是5棵,結論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數約是4.73棵,結論D不正確.故選D.考點:1.條形統計圖;2.加權平均數;3.中位數;4.眾數.10、C【解析】

根據拋物線y=kx2﹣2x﹣1與x軸有兩個不同的交點,得出b2﹣4ac>0,進而求出k的取值范圍.【詳解】∵二次函數y=kx2﹣2x﹣1的圖象與x軸有兩個交點,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵拋物線y=kx2﹣2x﹣1為二次函數,∴k≠0,則k的取值范圍為k>﹣1且k≠0,故選C.【點睛】本題考查了二次函數y=ax2+bx+c的圖象與x軸交點的個數的判斷,熟練掌握拋物線與x軸交點的個數與b2-4ac的關系是解題的關鍵.注意二次項系數不等于0.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據按一定規律排列的一列數依次為…,可得第n個數為,據此可得第100個數.【詳解】由題意,數列可改寫成,…,則后一個數的分子比前一個數的法則大2,后一個數的分母比前一個數的分母大3,∴第n個數為=,∴這列數中的第100個數為=;故答案為:.【點睛】本題考查數字類規律,解題的關鍵是讀懂題意,掌握數字類規律基本解題方法.12、【解析】

二次根式的加減運算,先化為最簡二次根式,再將被開方數相同的二次根式進行合并.【詳解】.【點睛】考點:二次根式的加減法.13、﹣1【解析】

根據點C的坐標以及菱形的性質求出點B的坐標,然后利用待定系數法求出k的值即可.【詳解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,則點B的橫坐標為﹣3﹣5=﹣8,故B的坐標為:(﹣8,4),將點B的坐標代入y=得,4=,解得:k=﹣1.故答案為:﹣1.14、(x+2)(x﹣2)【解析】【分析】直接利用平方差公式進行因式分解即可.【詳解】x2﹣4=x2-22=(x+2)(x﹣2),故答案為:(x+2)(x﹣2).【點睛】本題考查了平方差公式因式分解.能用平方差公式進行因式分解的式子的特點是:兩項平方項,符號相反.15、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結果數,其中“兩枚骰子的點數和小于8且為偶數”的結果數為9,所以“兩枚骰子的點數和小于8且為偶數”的概率==.故答案為.考點:列表法與樹狀圖法.16、x<-2或x>1【解析】試題分析:根據函數圖象可得:當時,x<-2或x>1.考點:函數圖象的性質17、a(a-6)2【解析】

原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)BH=125【解析】

(1)先判斷出∠AOC=90°,再判斷出OC∥BD,即可得出結論;(2)先利用相似三角形求出BF,進而利用勾股定理求出AF,最后利用面積即可得出結論.【詳解】(1)連接OC,∵AB是⊙O的直徑,點C是AB的中點,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位線,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵點B在⊙O上,∴BD是⊙O的切線;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OCBF∵OB=2,∴OC=OB=2,AB=4,OEEB∴2BF∴BF=3,在Rt△ABF中,∠ABF=90°,根據勾股定理得,AF=5,∵S△ABF=12AB?BF=1∴AB?BF=AF?BH,∴4×3=5BH,∴BH=125【點睛】此題主要考查了切線的判定和性質,三角形中位線的判定和性質,相似三角形的判定和性質,求出BF=3是解本題的關鍵.19、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】

(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據題意列出方程組求解,(2)①據題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數,所以x取34,y取最大值,(3)據題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數,∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數量滿足33≤x≤70的整數時,均獲得最大利潤;③當50<m<100時,m﹣50>0,y隨x的增大而增大,∴當x=70時,y取得最大值.即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.【點睛】本題主要考查了一次函數的應用,二元一次方程組及一元一次不等式的應用,解題的關鍵是根據一次函數x值的增大而確定y值的增減情況.20、,.【解析】

先把小括號內的通分,按照分式的減法和分式除法法則進行化簡,再把字母的值代入運算即可.【詳解】解:原式當時原式【點睛】考查分式的混合運算,掌握運算順序是解題的關鍵.21、米.【解析】試題分析:根據矩形的性質,得到對邊相等,設這條河寬為x米,則根據特殊角的三角函數值,可以表示出ED和BF,根據EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.試題解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四邊形AECF為矩形,∴EC=AF,AE=CF.設這條河寬為x米,∴AE=CF=x.在Rt△AED中,∵PQ∥MN,∴在Rt△BCF中,∵EC=ED+CD,AF=AB+BF,解得∴這條河的寬為米.22、(1)0.3L;(2)在這種滴水狀態下一天的滴水量為9.6L.【解析】

(1)根據點的實際意義可得;(2)設與之間的函數關系式為,待定系數法求解可得,計算出時的值,再減去容器內原有的水量即可.【詳解】(1)由圖象可知,容器內原有水0.3L.(2)由圖象可知W與t之間的函數圖象經過點(0,0.3),故設函數關系式為W=kt+0.3.又因為函數圖象經過點(1.5,0.9),代入函數關系式,得1.5k+0.3=0.9,解得k=0.4.故W與t之間的函數關系式為W=0.4t+0.3.當t=24時,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在這種滴水狀態下一天的滴水量為9.6L.【點睛】本題考查了一次函數的應用,關鍵是利用待定系數法正確求出一次函數的解析式.23、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D組的頻數除以它所占的百分比得到樣本容量;用樣本容

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論