樹莓大禮包計(jì)算機(jī)圖形學(xué)課件_第1頁(yè)
樹莓大禮包計(jì)算機(jī)圖形學(xué)課件_第2頁(yè)
樹莓大禮包計(jì)算機(jī)圖形學(xué)課件_第3頁(yè)
樹莓大禮包計(jì)算機(jī)圖形學(xué)課件_第4頁(yè)
樹莓大禮包計(jì)算機(jī)圖形學(xué)課件_第5頁(yè)
已閱讀5頁(yè),還剩88頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

A.ProfChengyingCourseA.ProfChengyingCourse LectureSubdivisioncurvesandsurfaces細(xì)分曲面RepresentationofnaturalL-SystemL系統(tǒng)Particlesystem粒子系統(tǒng)Imlicitsurfaces隱式曲面WhatisSubdivisionisaprocessinwhichapoly-line/meshisrecursivelyrefinedinordertoachieveasmooth 1Cu廿bb盧盧凡Ja1a

口mf0,l201HowtoSubdivisionExtendingtoTypeofTwomaingroupsofApproximating-originalverticesareInterpolating–originalverticesareWhyFramefrom“Geri’sGame”byWhyLOD(levelofHistoryof‘80s,Loop,‘95,ReifIncreasedcomplexitytoRenderman==>Geri’sArbitraryTopology-nopatch,general/vertexScalability-levelofdetail,UniformityofRepresentation-meshedtoNumericalStability-goodforCodeBasicSubdivisionschemesareusuallydefinedondifferenttypesofpolygonalmeshesTriangularmeshes(三角網(wǎng)格 lmeshes(四邊形網(wǎng)格Tri/quadmeshes(混合網(wǎng)格Valenceofvertices頂點(diǎn)的價(jià)ThenumberofedgesadjacenttotheBasicRegularvertexandirregularVertexofvalence4inaquadmeshisregular;andirregularVertexofvalence6inatri.meshisregular;andirregularAteach RefineIncreasenumberofvertices y)*Meshverticesconvergetoalimit–AfterinfinitenumberofsubdivisionBasicEverysubdivisionmethodRulestocalculatelocationofnewverticesandoldiftheyareAmethodtorefinethemeshAschemealwaysconsistsof2mainRulestodeterminethegeometry(Thisvertexisat(x,y,z))oftheverticesinthenewmesh.Amethodtogeneratethetopology(Theseverticesareconnected)ofthenewmesh.Constructingthe TriangularWorksonlyfortriangleEverytriangle cedby4newTwokindsofnewGreenverticesassociatedwitholdBlackverticesassociatedwitholdReductiontoatriangularWhenmeshisnottriangular,preprocessingis,LoopSubdivisionTopologicrules:insertanewvertextoeachFirstFirstLoopSubdivisionGeometricrules:regularLoopSubdivisionGeometricrules:irregularLoopSubdivisionLoopsubdivision:TheLimit LimitsurfacesofLoop’ssubdivisionisC2almostFinitesetofsingularlocationswherethesurfaceInitial 1st 2nd LimitButterflyInterpolationNewblackverticesinheritlocationofoldNewgreenverticescomputedbyfollowing

-

-

TheLimitLimitsurfacesofButterfly’ssubdivisionisC1almosteverywhereFinitesetofsingularlocationswherethesurfaceisC0.Example:Initial 1st 2nd LimitCatmull–Clarksurfacesaredefinedonameshofanarbitrarypolyhedron.jjnif inev1v2f14 n2v1

1j j

Topologicrules:insertavert.toeachedgeandeachface,theoldvert.is (butitisn’ttheThenewmeshwillconsistonlyofquadrilals,whichwon'tingeneralbenar.Thenewmeshwillgenerallylooksmootherthantheoldmesh.ComparisonofComparisonofComparisonofTheoreticalquestionsofImplementation:LoopUsehalf-edgetypedefstruct{floatx;floaty;floatz;_HEdge*_HVert*}

//從該點(diǎn)射出的其中一條typedefstruct{_HVert*_HEdge*_HFace*_HEdge*

//與該半邊相交的面的下_HVert*_HEdge*_HEdge*}

//細(xì)分得到的第1條半//細(xì)分得到的第2Face&typedefstruct{_HEdge* //與該面相交的其中一條}typedefstruct{CPtrListVert;CPtrListFace;}

頂點(diǎn)半邊AdaptiveNotallregionsofamodelneedtobeIdea:Usesomecriteriaandadaptivelysubdividemeshwhereneeded.Screensize(maketriangles<sizeofpixel)ViewDistancefromInviewCareful!Mustensurethat“cracks”aren’tSubdivisionSurfacesfor(Refinement)-ProgressiveGeometryAndreiKhodakovsky,PeterSchr?derandWimSweldens(SIGGRAPH2000)SubdivisionSurfaceSimplemethodfordescribingcomplexRelativelyeasytoArbitraryLocalGuaranteedcontinuity(C1orC2continuousBefitforanimation,rapid yticexpressionatirregularvertices奇異點(diǎn)處沒(méi)有解ItisdifficulttoconstructsurfacesofhigherorderSubdivisioncurvesandsurfaces細(xì)分曲面RepresentationofnaturalL-SystemL系統(tǒng)Particlesystem粒子系統(tǒng)Imlicitsurfaces隱式曲面RepresentationofnaturalModelingnaturalscenesisachallengeproblemMountains,trees,flowersandgrass,flame,cloud,smoke,fluid(山,樹,花草,火,云, ThreekindsofFractal分形L-Systembasedon rrules( Particlesystem粒子系統(tǒng)Mainfeaturesoffractal分形的特點(diǎn)Selfsimilarity自相似性):localregionsofafractalaresimilartothefractalitselfInfinitesimaldetail無(wú)限小細(xì)節(jié)):AfractalalwaysexhibitsdetailsnomatterhowsmalltheregionisExample:KochsnowKochsnowflakecurve雪花曲線1/3原,RepeattheSierpinski三角形Mountaingenerationbased一維分–Let(xiyi)、(xi+1yi+1betwoendpoints,thenewlyinsertedpoint(xnew,ynew)iscalculatedas: 1(x 1(y )P(x

–Random(?)generatesarandomnumberin[0,1],P(?)isusedtocontrolthescale.Forexample,inthes-throundofi tion,wesetP(s)=2-s1DMountainbasedonfractal:Givenline

Movethemidpointalongy-axisbyarandomdistanceRepeattheprocess2Dmountain:Atriangleissplitintofour.(b)Themidpointofeachedgedisturbedalongy-Remarks:YouuseamorecomplexinitialrepeattherefinementusingsubdivisiontopologicMountainsurface:L-systems(Lindenmayersystem)ntAristidLindenmayer( 爾),17/11/1925–30/10/1989,Hungarian1968developedL-systemtomodelthebehaviourofcellsof L-systemsnowadaysarealsousedtomodelwhole L-system nt rrules:agr rrulere cesastringusinganewoneThe tionresultiscalledageneration一代Characterex nation:usegeometricprimitivesto cethecharactersTree:Characters:“A”,“B”,“[”“]”,“(”, rA→AA;2 B→A[B]AA(B)→Character nation(字符解釋“A”standsforastem;“B”isa“[]”:thebranchturnsleftwith“()”:turnright, (a) (b)1st (c)2stL-system:examplesfor ntIntroducemorecontrolinL-IllustratethecharacterofdifferentgenerationwithadifferentBranchesof(n+1)-thgenerationshouldbesmallerandshorterthanthatofthen-thgenerationFlowersandleavesareassignedtoterminationnodes終止節(jié)Usedifferent rrulesanddifferentTreesbasedonL-system:Furtherreading:TheAlgorithmicBeauty Oftenusedtosimulatefirefogsmokefluidand 隨時(shí)間變化的粒子粒子的運(yùn)動(dòng)由物理方法粒子被賦予生命generation,developmentandWILLIAMT.REEVES.ParticleSystemsm:ATechniqueforModelingaClassofFuzzyObjects.ACMTOG,2(2),1983:91-108GeneraldescriptionofparticleParticlesystemisadynamicThestepstogenerateaframeCreatenewparticlesandaddthemintotheAssignDeleteparticleswhohavediedMoveparticleaccordingtotheirRenderall1ParticleSpecifythenewparticlenumberofeachframe為每一幀指定新粒子數(shù)Npartsf=MeanPartsf+Rand()XVariancePartsfMeanPartf平均值;VarianceParts----變化范圍1≤rand(1Determinethenewparticlenumberaccordingtoscreensize(由屏幕大小指定粒子數(shù))Npartsf=(MeanPartsSAf+Rand()XVariancePartsSAf)X(按照這個(gè)方法新粒子數(shù)個(gè)數(shù)取決于屏幕面積2ParticleInitialInitial

InitialSize=MeanSize+Rand()XInitial 初始顏色I(xiàn)nitialInitial…

初 3Particlefield:gravitywindtension(壓力Collision(碰撞Spring(彈力Springsbetweenneighboringparticles…Dynamics(動(dòng)力學(xué)Newtonlaw:f=Gravity(加速度):a(t+△t)=gSpeed(速度):v(t△t)v(t)a(t)*tp(t+△t)=p(t)+v(t)*△t+4Particleextinction(粒 Forparticles,ifitslifetimeexceedsitslifecircle,weneedtoremoveitfromthesystem.ParticleRenderallparticlesasitsspecifiedFlameandwaterfall:粒子系統(tǒng)生成的火 粒子系統(tǒng)生成的瀑Naturalscene用其它方法可以模擬波浪、云和大氣、湍流、布料等 FurtherW.T.Reeves.ParticleSystems---aTechniqueforModelingaClassofFuzzyObjects,1983, TransactionsonGraphics(TOG),2(2)Real-timecloudsimulationandrendering,Siggraphcourse,2005.Subdivisioncurvesandsurfaces細(xì)分曲面RepresentationofnaturalL-Syste

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論