




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,如果折疊后得等腰△EBA,那么結論中:①∠A=30°;②點C與AB的中點重合;③點E到AB的距離等于CE的長,正確的個數是()A.0 B.1 C.2 D.32.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數為()A.62° B.38° C.28° D.26°3.某運動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.4.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.5.今年我市計劃擴大城區綠地面積,現有一塊長方形綠地,它的短邊長為60m,若將短邊增長到長邊相等(長邊不變),使擴大后的棣地的形狀是正方形,則擴大后的綠地面積比原來增加1600,設擴大后的正方形綠地邊長為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16006.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.7.已知一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.28.已知一組數據a,b,c的平均數為5,方差為4,那么數據a﹣2,b﹣2,c﹣2的平均數和方差分別是.()A.3,2 B.3,4 C.5,2 D.5,49.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數最少是()A.4 B.5 C.6 D.710.益陽市高新區某廠今年新招聘一批員工,他們中不同文化程度的人數見下表:文化程度高中大專本科碩士博士人數9172095關于這組文化程度的人數數據,以下說法正確的是:()A.眾數是20 B.中位數是17 C.平均數是12 D.方差是2611.以下各圖中,能確定的是()A. B. C. D.12.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.32二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關于的方程有增根,則______.14.如圖,某數學興趣小組將邊長為4的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形DAB的面積為__________.15.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.16.觀察下列圖形:它們是按一定的規律排列的,依照此規律,第n個圖形共有___個★.17.擲一枚材質均勻的骰子,擲得的點數為合數的概率是__________.18.在直角坐標系平面內,拋物線y=3x2+2x在對稱軸的左側部分是_____的(填“上升”或“下降”)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某商城銷售A,B兩種自行車型自行車售價為2
100元輛,B型自行車售價為1
750元輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80
000元購進A型自行車的數量與用64
000元購進B型自行車的數量相等.求每輛A,B兩種自行車的進價分別是多少?現在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數量不超過A型自行車數量的2倍,總利潤不低于13
000元,求獲利最大的方案以及最大利潤.20.(6分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數;(3)若EF=2,tanB=3,求CE?CG的值.21.(6分)制作一種產品,需先將材料加熱達到60℃后,再進行操作,設該材料溫度為y(℃)從加熱開始計算的時間為x(min).據了解,當該材料加熱時,溫度y與時間x成一次函數關系:停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數關系式;根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?22.(8分)計算:÷–+2018023.(8分)解不等式組,并將它的解集在數軸上表示出來.24.(10分)如圖,二次函數y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).(1)求該二次函數的表達式;(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數表達式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由;②動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當運動時間t為何值時,△DMN的面積最大,并求出這個最大值.25.(10分)某商場將進價40元一個的某種商品按50元一個售出時,每月能賣出500個.商場想了兩個方案來增加利潤:方案一:提高價格,但這種商品每個售價漲價1元,銷售量就減少10個;方案二:售價不變,但發資料做廣告.已知當這種商品每月的廣告費用為m(千元)時,每月銷售量將是原銷售量的p倍,且p=.試通過計算,請你判斷商場為賺得更大的利潤應選擇哪種方案?請說明你判斷的理由!26.(12分)某小區為了安全起見,決定將小區內的滑滑板的傾斜角由45°調為30°,如圖,已知原滑滑板AB的長為4米,點D,B,C在同一水平地面上,調整后滑滑板會加長多少米?(結果精確到0.01米,參考數據:,,)27.(12分)我市304國道通遼至霍林郭勒段在修建過程中經過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數,參考數據≈1.732)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據翻折變換的性質分別得出對應角相等以及利用等腰三角形的性質判斷得出即可.【詳解】∵把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,折疊后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①選項正確;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②選項正確;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分線上的點到角的兩邊距離相等),∴點E到AB的距離等于CE的長,故③選項正確,故正確的有3個.故選D.【點睛】此題主要考查了翻折變換的性質以及角平分線的性質和等腰三角形的性質等知識,利用折疊前后對應角相等是解題關鍵.2、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質.注意:根據斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關鍵.3、C【解析】
從正面看到的圖形如圖所示:,故選C.4、B【解析】
先根據翻折變換的性質得到△DEF≌△AEF,再根據等腰三角形的性質及三角形外角的性質可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質、等腰直角三角形的性質、勾股定理、三角形外角的性質,涉及面較廣,但難易適中.5、A【解析】試題分析:根據題意可得擴建的部分相當于一個長方形,這個長方形的長和寬分別為x米和(x-60)米,根據長方形的面積計算法則列出方程.考點:一元二次方程的應用.6、A【解析】
根據銳角三角函數的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【詳解】根據在△ABC中,∠C=90°,那么sinB==,故答案選A.【點睛】本題考查的知識點是銳角三角函數的定義,解題的關鍵是熟練的掌握銳角三角函數的定義.7、C【解析】
根據題意得出旋轉后的函數解析式為y=-x-1,然后根據解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【詳解】∵一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),∴設旋轉后的函數解析式為y=﹣x﹣1,在一次函數y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數y=﹣x+2與x軸交點為(4,1).一次函數y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數圖象與幾何變換,解題的關鍵是求出旋轉后的函數解析式.本題屬于基礎題,難度不大.8、B【解析】試題分析:平均數為(a?2+b?2+c?2)=(3×5-6)=3;原來的方差:;新的方差:,故選B.考點:平均數;方差.9、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數所以圖中的小正方體最少2+4=1.故選C.10、C【解析】
根據眾數、中位數、平均數以及方差的概念求解.【詳解】A、這組數據中9出現的次數最多,眾數為9,故本選項錯誤;B、因為共有5組,所以第3組的人數為中位數,即9是中位數,故本選項錯誤;C、平均數==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【點睛】本題考查了中位數、平均數、眾數的知識,解答本題的關鍵是掌握各知識點的概念.11、C【解析】
逐一對選項進行分析即可得出答案.【詳解】A中,利用三角形外角的性質可知,故該選項錯誤;B中,不能確定的大小關系,故該選項錯誤;C中,因為同弧所對的圓周角相等,所以,故該選項正確;D中,兩直線不平行,所以,故該選項錯誤.故選:C.【點睛】本題主要考查平行線的性質及圓周角定理的推論,掌握圓周角定理的推論是解題的關鍵.12、B【解析】
根據題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1【解析】根據分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化為整式方程為:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案為-1.點睛:此題主要考查了分式方程的增根問題,解題關鍵是明確增根出現的原因,把增根代入最簡公分母即可求得增根,然后把它代入所化為的整式方程即可求出未知系數.14、【解析】
設扇形的圓心角為n°,則根據扇形的弧長公式有:,解得所以15、1.【解析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.16、【解析】
分別求出第1個、第2個、第3個、第4個圖形中★的個數,得到第5個圖形中★的個數,進而找到規律,得出第n個圖形中★的個數,即可求解.【詳解】第1個圖形中有1+3×1=4個★,
第2個圖形中有1+3×2=7個★,
第3個圖形中有1+3×3=10個★,
第4個圖形中有1+3×4=13個★,
第5個圖形中有1+3×5=16個★,
…
第n個圖形中有1+3×n=(3n+1)個★.故答案是:1+3n.【點睛】考查了規律型:圖形的變化類;根據圖形中變化的量和n的關系與不變的量得到圖形中★的個數與n的關系是解決本題的關鍵.17、【解析】分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.詳解:擲一枚質地均勻的骰子,擲得的點數可能是1、2、3、4、5、6中的任意一個數,共有六種可能,其中4、6是合數,所以概率為=.故答案為.點睛:本題主要考查概率的求法,用到的知識點為:概率=所求情況數與總情況數之比.18、下降【解析】
根據拋物線y=3x2+2x圖像性質可得,在對稱軸的左側部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數的圖像及性質.根據拋物線開口方向和對稱軸的位置即可得出結論.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)每輛A型自行車的進價為2000元,每輛B型自行車的進價為1600元;(2)當購進A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【解析】
(1)設每輛B型自行車的進價為x元,則每輛A型自行車的進價為(x+10)元,根據題意列出方程,求出方程的解即可得到結果;
(2)由總利潤=單輛利潤×輛數,列出y與x的關系式,利用一次函數性質確定出所求即可.【詳解】(1)設每輛B型自行車的進價為x元,則每輛A型自行車的進價為(x+10)元,根據題意,得=,解得x=1600,經檢驗,x=1600是原方程的解,x+10=1600+10=2000,答:每輛A型自行車的進價為2000元,每輛B型自行車的進價為1600元;(2)由題意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根據題意,得,解得:33≤m≤1,∵m為正整數,∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y隨m的增大而減小,∴當m=34時,y有最大值,最大值為:﹣50×34+15000=13300(元).答:當購進A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【點睛】本題主要考查一次函數的應用、分式方程的應用及一元一次不等式組的應用.仔細審題,找出題目中的數量關系是解答本題的關鍵.20、(1)見解析;(2)70°;(3)1.【解析】
(1)先根據等邊對等角得出∠B=∠D,即可得出結論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質,圓周角定理,勾股定理,銳角三角函數,相似三角形的判定和性質,圓內接四邊形的性質,等腰三角形的性質等,綜合性較強,有一定的難度,熟練掌握和靈活運用相關知識是解題的關鍵.本題中求出BE=2也是解題的關鍵.21、(1);(2)20分鐘.【解析】
(1)材料加熱時,設y=ax+15(a≠0),由題意得60=5a+15,解得a=9,則材料加熱時,y與x的函數關系式為y=9x+15(0≤x≤5).停止加熱時,設y=(k≠0),由題意得60=,解得k=300,則停止加熱進行操作時y與x的函數關系式為y=(x≥5);(2)把y=15代入y=,得x=20,因此從開始加熱到停止操作,共經歷了20分鐘.答:從開始加熱到停止操作,共經歷了20分鐘.22、2【解析】
根據實數的混合運算法則進行計算.【詳解】解:原式=-(-1)+1=-+1+1=2【點睛】此題重點考察學生對實數的混合運算的應用,熟練掌握計算方法是解題的關鍵.23、x≤1,解集表示在數軸上見解析【解析】
首先根據不等式的解法求解不等式,然后在數軸上表示出解集.【詳解】去分母,得:3x﹣2(x﹣1)≤3,去括號,得:3x﹣2x+2≤3,移項,得:3x﹣2x≤3﹣2,合并同類項,得:x≤1,將解集表示在數軸上如下:【點睛】本題考查了解一元一次不等式,解題的關鍵是掌握不等式的解法以及在數軸上表示不等式的解集.24、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當t=時,S△MDN的最大值為.【解析】
(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結果;
(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD∥BC,設直線AD的解析式為y=-x+b,即可得到結論;
(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要當或時,△PBC∽△ABD,解方程組得D(4,?5),求得設P的坐標為(x,0),代入比例式解得或x=?4.5,即可得到或P(?4.5,0);
②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF求得求得由于于是得到即可得到結果.【詳解】(1)由題意知:解得∴二次函數的表達式為(2)在中,令y=0,則解得:∴B(3,0),由已知條件得直線BC的解析式為y=?x+3,∵AD∥BC,∴設直線AD的解析式為y=?x+b,∴0=1+b,∴b=?1,∴直線AD的解析式為y=?x?1;(3)①∵BC∥AD,∴∠DAB=∠CBA,∴只要當:或時,△PBC∽△ABD,解得D(4,?5),∴設P的坐標為(x,0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全民體檢健康管理制度
- 公司外邊車輛管理制度
- 醫療室內器械管理制度
- 公司轎車使用管理制度
- 園區集體宿舍管理制度
- 學校圖書借閱管理制度
- 土建施工安全管理制度
- 公司監控能力管理制度
- 商店用水用電管理制度
- 衛生清掃人員管理制度
- 石油鉆井動火作業的風險識別及安全措施
- 環網柜維修施工方案
- INS+2024指南更新要點解讀
- 2025年-四川省安全員《A證》考試題庫及答案
- HSE管理體系文件
- 鎖骨骨折臨床路徑管理
- 運維管理培訓
- 2024年四川樂山中考滿分作文《有一束光照亮了我》
- 工程大學生創業規劃書
- 2025年廣東省佛山市南海區中考一模英語試題(原卷版+解析版)
- 部編2024版歷史七年級下冊期末(全冊)復習卷
評論
0/150
提交評論