




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,EF過?ABCD對角線的交點O,交AD于E,交BC于F,若?ABCD的周長為18,,則四邊形EFCD的周長為A.14 B.13 C.12 D.102.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°3.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm4.一個多邊形內角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形5.如果關于的不等式組的整數解僅有、,那么適合這個不等式組的整數、組成的有序數對共有()A.個 B.個 C.個 D.個6.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.47.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結構圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm28.在平面直角坐標系xOy中,若點P(3,4)在⊙O內,則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>59.下列計算結果等于0的是()A. B. C. D.10.如果a﹣b=5,那么代數式(﹣2)?的值是()A.﹣ B. C.﹣5 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.若函數y=mx2+2x+1的圖象與x軸只有一個公共點,則常數m的值是.12.如圖,把一個面積為1的正方形分成兩個面積為的長方形,再把其中一個面積為的長方形分成兩個面積為的正方形,再把其中一個面積為的正方形分成兩個面積為的長方形,如此進行下去……,試用圖形揭示的規律計算:__________.13.如果反比例函數的圖象經過點A(2,y1)與B(3,y2),那么的值等于_____________.14.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應點為P,則線段AP的長為______.15.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復摸球試驗后發現,摸到黃球的頻率穩定在,那么估計盒子中小球的個數是_______.16.8的算術平方根是_____.三、解答題(共8題,共72分)17.(8分)觀察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的規律,寫出第⑥個等式:_____;(2)模仿上面的方法,寫出下面等式的左邊:_____=502;(3)按照上面的規律,寫出第n個等式,并證明其成立.18.(8分)如圖,△ABC內接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF(1)判斷AF與⊙O的位置關系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.19.(8分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積20.(8分)在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點D為OB的中點,點E是線段AB上的動點,連結DE,作DF⊥DE,交OA于點F,連結EF.已知點E從A點出發,以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.如圖1,當t=3時,求DF的長.如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.連結AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.21.(8分)為迎接“世界華人炎帝故里尋根節”,某工廠接到一批紀念品生產訂單,按要求在15天內完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數)每件產品的成本是p元,p與x之間符合一次函數關系,部分數據如表:天數(x)13610每件成本p(元)7.58.51012任務完成后,統計發現工人李師傅第x天生產的產品件數y(件)與x(天)滿足如下關系:y=,設李師傅第x天創造的產品利潤為W元.直接寫出p與x,W與x之間的函數關系式,并注明自變量x的取值范圍:求李師傅第幾天創造的利潤最大?最大利潤是多少元?任務完成后.統計發現平均每個工人每天創造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?22.(10分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關系,并說明理由.23.(12分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.24.清朝數學家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少,每畝場地折實田多少?譯文為:若有山田3畝,場地6畝,其產糧相當于實田4.7畝;若有山田5畝,場地3畝,其產糧相當于實田5.5畝,問每畝山田和每畝場地產糧各相當于實田多少畝?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
∵平行四邊形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四邊形ABCD=18,∴CD+AD=9,∴C四邊形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故選C.【點睛】本題關鍵在于利用三角形全等,解題關鍵是將四邊形CDEF的周長進行轉化.2、C【解析】
這個扇形的圓心角的度數為n°,根據弧長公式得到20π=,然后解方程即可.【詳解】解:設這個扇形的圓心角的度數為n°,根據題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數,R為扇形所在圓的半徑).3、A【解析】
過點P作PD⊥OB于D,根據角平分線上的點到角的兩邊距離相等可得PC=PD,再根據垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.4、B【解析】
多邊形的外角和是310°,則內角和是2×310=720°.設這個多邊形是n邊形,內角和是(n﹣2)?180°,這樣就得到一個關于n的方程,從而求出邊數n的值.【詳解】設這個多邊形是n邊形,根據題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點睛】本題考查了多邊形的內角與外角,熟記內角和公式和外角和定理并列出方程是解題的關鍵.根據多邊形的內角和定理,求邊數的問題就可以轉化為解方程的問題來解決.5、D【解析】
求出不等式組的解集,根據已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時,b=9、10、11;當a=4時,b=9、10、11;所以適合這個不等式組的整數a、b組成的有序數對(a,b)共有6個,故選:D.【點睛】本題考查了解一元一次不等式組,不等式組的整數解,有序實數對的應用,解此題的根據是求出a、b的值.6、B【解析】
此題可根據反比例函數圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結合反比例函數系數k的幾何意義得到k的值.【詳解】根據雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經常考查的一個知識點.7、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.8、D【解析】
先利用勾股定理計算出OP=1,然后根據點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內,∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.9、A【解析】
各項計算得到結果,即可作出判斷.【詳解】解:A、原式=0,符合題意;
B、原式=-1+(-1)=-2,不符合題意;
C、原式=-1,不符合題意;
D、原式=-1,不符合題意,
故選:A.【點睛】本題考查了有理數的運算,熟練掌握運算法則是解本題的關鍵.10、D【解析】【分析】先對括號內的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、0或1【解析】分析:需要分類討論:①若m=0,則函數y=2x+1是一次函數,與x軸只有一個交點;②若m≠0,則函數y=mx2+2x+1是二次函數,根據題意得:△=4﹣4m=0,解得:m=1。∴當m=0或m=1時,函數y=mx2+2x+1的圖象與x軸只有一個公共點。12、【解析】
結合圖形發現計算方法:,即計算其面積和的時候,只需讓總面積減去剩下的面積.【詳解】解:原式==故答案為:【點睛】此題注意結合圖形的面積找到計算的方法:其中的面積和等于總面積減去剩下的面積.13、【解析】分析:由已知條件易得2y1=k,3y2=k,由此可得2y1=3y2,變形即可求得的值.詳解:∵反比例函數的圖象經過點A(2,y1)與B(3,y2),∴2y1=k,3y2=k,∴2y1=3y2,∴.故答案為:.點睛:明白:若點A和點B在同一個反比例函數的圖象上,則是解決本題的關鍵.14、1或1﹣2【解析】
當點P在AF上時,由翻折的性質可求得PF=FC=1,然后再求得正方形的對角線AF的長,從而可得到PA的長;當點P在BE上時,由正方形的性質可知BP為AF的垂直平分線,則AP=PF,由翻折的性質可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點睛】本題主要考查的是翻折的性質、正方形的性質的應用,根據題意畫出符合題意的圖形是解題的關鍵.15、1【解析】
根據利用頻率估計概率得到摸到黃球的概率為1%,然后根據概率公式計算n的值.【詳解】解:根據題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當實驗的所有可能結果不是有限個或結果個數很多,或各種可能結果發生的可能性不相等時,一般通過統計頻率來估計概率.16、2.【解析】試題分析:本題主要考查的是算術平方根的定義,掌握算術平方根的定義是解題的關鍵.依據算術平方根的定義回答即可.由算術平方根的定義可知:8的算術平方根是,∵=2,∴8的算術平方根是2.故答案為2.考點:算術平方根.三、解答題(共8題,共72分)17、6×10+4=8248×52+4【解析】
(1)根據題目中的式子的變化規律可以解答本題;(2)根據題目中的式子的變化規律可以解答本題;(3)根據題目中的式子的變化規律可以寫出第n個等式,并加以證明.【詳解】解:(1)由題目中的式子可得,第⑥個等式:6×10+4=82,故答案為6×10+4=82;(2)由題意可得,48×52+4=502,故答案為48×52+4;(3)第n個等式是:n×(n+4)+4=(n+2)2,證明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【點睛】本題考查有理數的混合運算、數字的變化類,解答本題的關鍵是明確有理數的混合運算的計算方法.18、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據切線的性質得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質;2.勾股定理;3.相似三角形的判定與性質.19、(1)證明見解析;(2).【解析】
(1)先根據直角三角形斜邊上中線的性質,得出DE=AB=AE,DF=AC=AF,再根據AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進而判定四邊形AEDF是菱形;
(2)根據等邊三角形的性質得出EF=5,AD=5,進而得到菱形AEDF的面積S.【詳解】解:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,點E、F分別是AB、AC的中點,
∴AE=AF,
∴AE=AF=DE=DF,
∴四邊形AEDF是菱形;
(2)如圖,
∵AB=AC=BC=10,
∴EF=5,AD=5,
∴菱形AEDF的面積S=EF?AD=×5×5=.【點睛】本題考查菱形的判定與性質的運用,解題時注意:四條邊相等的四邊形是菱形;菱形的面積等于對角線長乘積的一半.20、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.【解析】
(1)當t=3時,點E為AB的中點,∵A(8,0),C(0,6),∴OA=8,OC=6,∵點D為OB的中點,∴DE∥OA,DE=OA=4,∵四邊形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四邊形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不變;理由如下:作DM⊥OA于M,DN⊥AB于N,如圖2所示:∵四邊形OABC是矩形,∴OA⊥AB,∴四邊形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,,∵點D為OB的中點,∴M、N分別是OA、AB的中點,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴,∵∠EDF=90°,∴tan∠DEF=;(3)作DM⊥OA于M,DN⊥AB于N,若AD將△DEF的面積分成1:2的兩部分,設AD交EF于點G,則點G為EF的三等分點;①當點E到達中點之前時,如圖3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵點G為EF的三等分點,∴G(,),設直線AD的解析式為y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直線AD的解析式為y=﹣x+6,把G(,)代入得:t=;②當點E越過中點之后,如圖4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵點G為EF的三等分點,∴G(,),代入直線AD的解析式y=﹣x+6得:t=;綜上所述,當AD將△DEF分成的兩部分的面積之比為1:2時,t的值為或.考點:四邊形綜合題.21、(1)W=;(2)李師傅第8天創造的利潤最大,最大利潤是324元;(3)李師傅共可獲得160元獎金.【解析】
(1)根據題意和表格中的數據可以求得p與x,W與x之間的函數關系式,并注明自變量x的取值范圍:(2)根據題意和題目中的函數表達式可以解答本題;(3)根據(2)中的結果和不等式的性質可以解答本題.【詳解】(1)設p與x之間的函數關系式為p=kx+b,則有,解得,,即p與x的函數關系式為p=0.5x+7(1≤x≤15,x為整數),當1≤x<10時,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,當10≤x≤15時,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)當1≤x<10時,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴當x=8時,W取得最大值,此時W=324,當10≤x≤15時,W=﹣20x+520,∴當x=10時,W取得最大值,此時W=320,∵324>320,∴李師傅第8天創造的利潤最大,最大利潤是324元;(3)當1≤x<10時,令﹣x2+16x+260=299,得x1=3,x2=13,當W>299時,3<x<13,∵1≤x<10,∴3<x<10,當10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 4325-2022水工船閘運營人員服務規范
- DB32/T 4266-2022全域旅游示范區評審工作信息系統建設規范
- DB32/T 4197-2022區塊鏈信息系統通用測試規范
- DB32/T 3998-2021鴿蛋人工孵化技術規程
- DB32/T 3929-2020瓜類蔬菜立式栽培技術規程
- DB32/T 3818-2020泵站輔助設備系統檢修技術規程
- DB32/T 3762.6-2020新型冠狀病毒檢測技術規范第6部分:血清IgM和IgG抗體膠體金免疫層析檢測程序
- DB32/T 3758-2020新型冠狀病毒肺炎疫情防控集中醫學觀察場所消毒技術規范
- DB32/T 3671-2019民主法治示范村(社區)建設規范
- DB32/T 3660-2019設施栽培西瓜枯萎病防治技術規程
- 合肥市2025屆高三年級5月教學質量檢測(合肥三模)生物試題+答案
- 江蘇省南京市建鄴區2023-2024學年八年級下學期期末考試物理試題【含答案解析】
- 公立醫院與民營醫院醫聯體合作協議書(2篇)
- 重大活動保供電工作流程
- 25《慢性子裁縫和急性子顧客》核心素養公開課一等獎創新教學設計
- 退出聯合診所協議書
- 【初中地理】七年級地理下冊全冊期末總復習(課件)-2024-2025學年七年級地理課件(人教版2024年)
- 物業管理服務交接方案
- 港股通知識測試題及答案
- 2025年重慶三峰環境產業集團有限公司招聘筆試參考題庫含答案解析
- 組織學與胚胎學知到課后答案智慧樹章節測試答案2025年春浙江中醫藥大學
評論
0/150
提交評論