




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)2.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大3.如圖,是直角三角形,,,點在反比例函數(shù)的圖象上.若點在反比例函數(shù)的圖象上,則的值為()A.2 B.-2 C.4 D.-44.已知關于的方程,下列說法正確的是A.當時,方程無解B.當時,方程有一個實數(shù)解C.當時,方程有兩個相等的實數(shù)解D.當時,方程總有兩個不相等的實數(shù)解5.根據(jù)物理學家波義耳1662年的研究結果:在溫度不變的情況下,氣球內氣體的壓強p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關系的是()A. B.C. D.6.已知數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c7.輪船沿江從港順流行駛到港,比從港返回港少用3小時,若船速為26千米/時,水速為2千米/時,求港和港相距多少千米.設港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.8.不等式組的解集為.則的取值范圍為()A. B. C. D.9.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網絡上推出,即刻轉發(fā)量就超過810000這個數(shù)用科學記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×10410.下列命題中,真命題是()A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系的第一象限內,邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a).如圖,若曲線與此正方形的邊有交點,則a的取值范圍是________.12.如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點P在圓B上移動,連接AP,并將AP繞點A逆時針旋轉90°至Q,連接BQ,在點P移動過程中,BQ長度的最小值為_____.13.如圖,已知圓柱底面周長為6cm,圓柱高為2cm,在圓柱的側面上,過點A和點C嵌有一圈金屬絲,則這圈金屬絲的周長最小為_____cm.14.如圖,在中,AB為直徑,點C在上,的平分線交于D,則______15.某市政府為了改善城市容貌,綠化環(huán)境,計劃經過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.16.小亮同學在搜索引擎中輸入“敘利亞局勢最新消息”,能搜到與之相關的結果的個數(shù)約為3550000,這個數(shù)用科學記數(shù)法表示為.三、解答題(共8題,共72分)17.(8分)某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.求出y與x的函數(shù)關系式;當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?18.(8分)如圖,一次函數(shù)y=2x﹣4的圖象與反比例函數(shù)y=的圖象交于A、B兩點,且點A的橫坐標為1.(1)求反比例函數(shù)的解析式;(2)點P是x軸上一動點,△ABP的面積為8,求P點坐標.19.(8分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).20.(8分)我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農民組建農副產品銷售公司,某農副產品的年產量不超過100萬件,該產品的生產費用y(萬元)與年產量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產出的產品都能在當年銷售完,達到產銷平衡,所獲毛利潤為W萬元.(毛利潤=銷售額﹣生產費用)(1)請直接寫出y與x以及z與x之間的函數(shù)關系式;(寫出自變量x的取值范圍)(2)求W與x之間的函數(shù)關系式;(寫出自變量x的取值范圍);并求年產量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?(3)由于受資金的影響,今年投入生產的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?21.(8分)已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.22.(10分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結果保留根號).23.(12分)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.(1)求證:AH是⊙O的切線;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求證:CD=DH.24.已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學興趣小組的同學在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結果精確到1米).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標.【詳解】如圖,點P的坐標為(-4,-3).
故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.2、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.3、D【解析】
要求函數(shù)的解析式只要求出點的坐標就可以,過點、作軸,軸,分別于、,根據(jù)條件得到,得到:,然后用待定系數(shù)法即可.【詳解】過點、作軸,軸,分別于、,設點的坐標是,則,,,,,,,,,,,,因為點在反比例函數(shù)的圖象上,則,點在反比例函數(shù)的圖象上,點的坐標是,.故選:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,相似三角形的判定與性質,求函數(shù)的解析式的問題,一般要轉化為求點的坐標的問題,求出圖象上點的橫縱坐標的積就可以求出反比例函數(shù)的解析式.4、C【解析】當時,方程為一元一次方程有唯一解.當時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當時,方程有兩個相等的實數(shù)解,當且時,方程有兩個不相等的實數(shù)解.綜上所述,說法C正確.故選C.5、C【解析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【點睛】本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.6、C【解析】
首先根據(jù)數(shù)軸可以得到a、b、c的取值范圍,然后利用絕對值的定義去掉絕對值符號后化簡即可.【詳解】解:通過數(shù)軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.7、A【解析】
通過題意先計算順流行駛的速度為26+2=28千米/時,逆流行駛的速度為:26-2=24千米/時.根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時”,得出等量關系,據(jù)此列出方程即可.【詳解】解:設A港和B港相距x千米,可得方程:故選:A.【點睛】本題考查了由實際問題抽象出一元一次方程,抓住關鍵描述語,找到等量關系是解決問題的關鍵.順水速度=水流速度+靜水速度,逆水速度=靜水速度-水流速度.8、B【解析】
求出不等式組的解集,根據(jù)已知得出關于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點睛】本題考查了解一元一次不等式組的應用,解此題的關鍵是能根據(jù)不等式組的解集和已知得出關于k的不等式,難度適中.9、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】810000=8.1×1.
故選B.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、D【解析】
根據(jù)兩圓的位置關系、直線和圓的位置關系判斷即可.【詳解】A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離或內含,A是假命題;B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內切或相交,B是假命題;C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點睛】本題考查了兩圓的位置關系:設兩圓半徑分別為R、r,兩圓圓心距為d,則當d>R+r時兩圓外離;當d=R+r時兩圓外切;當R-r<d<R+r(R≥r)時兩圓相交;當d=R-r(R>r)時兩圓內切;當0≤d<R-r(R>r)時兩圓內含.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1≤a≤【解析】
根據(jù)題意得出C點的坐標(a-1,a-1),然后分別把A、C的坐標代入求得a的值,即可求得a的取值范圍.【詳解】解:反比例函數(shù)經過點A和點C.當反比例函數(shù)經過點A時,即=3,解得:a=±(負根舍去);當反比例函數(shù)經過點C時,即=3,解得:a=1±(負根舍去),則-1≤a≤.故答案為:-1≤a≤.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,關鍵是掌握反比例函數(shù)y=(k為常數(shù),k≠0)的圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.12、3﹣1【解析】
通過畫圖發(fā)現(xiàn),點Q的運動路線為以D為圓心,以1為半徑的圓,可知:當Q在對角線BD上時,BQ最小,先證明△PAB≌△QAD,則QD=PB=1,再利用勾股定理求對角線BD的長,則得出BQ的長.【詳解】如圖,當Q在對角線BD上時,BQ最小.連接BP,由旋轉得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ長度的最小值為(3﹣1).故答案為3﹣1.【點睛】本題是圓的綜合題.考查了正方形的性質、旋轉的性質和最小值問題,尋找點Q的運動軌跡是本題的關鍵,通過證明兩三角形全等求出BQ長度的最小值最小值.13、2【解析】
要求絲線的長,需將圓柱的側面展開,進而根據(jù)“兩點之間線段最短”得出結果,在求線段長時,根據(jù)勾股定理計算即可.【詳解】解:如圖,把圓柱的側面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.∵圓柱底面的周長為6cm,圓柱高為2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴這圈金屬絲的周長最小為2AC=2cm.故答案為2.【點睛】本題考查了平面展開?最短路徑問題,圓柱的側面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題就是把圓柱的側面展開成矩形,“化曲面為平面”,用勾股定理解決.14、1【解析】
由AB為直徑,得到,由因為CD平分,所以,這樣就可求出.【詳解】解:為直徑,
,
又平分,
,
.
故答案為1.【點睛】本題考查了圓周角定理:在同圓和等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半同時考查了直徑所對的圓周角為90度.15、10%【解析】
本題可設這兩年平均每年的增長率為x,因為經過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【詳解】解:設這兩年平均每年的綠地增長率為x,根據(jù)題意得,
(1+x)1=1+44%,
解得x1=-1.1(舍去),x1=0.1.
答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【點睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎.16、3.55×1.【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】3550000=3.55×1,故答案是:3.55×1.【點睛】考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)y=﹣2x+80(20≤x≤28);(2)每本紀念冊的銷售單價是25元;(3)該紀念冊銷售單價定為28元時,才能使文具店銷售該紀念冊所獲利潤最大,最大利潤是192元.【解析】
(1)待定系數(shù)法列方程組求一次函數(shù)解析式.(2)列一元二次方程求解.(3)總利潤=單件利潤銷售量:w=(x-20)(-2x+80),得到二次函數(shù),先配方,在定義域上求最值.【詳解】(1)設y與x的函數(shù)關系式為y=kx+b.把(22,36)與(24,32)代入,得解得∴y=-2x+80(20≤x≤28).(2)設當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是x元,根據(jù)題意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本紀念冊的銷售單價是25元.(3)由題意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售價不低于20元且不高于28元,當x<30時,y隨x的增大而增大,∴當x=28時,w最大=-2×(28-30)2+200=192(元).答:該紀念冊銷售單價定為28元時,能使文具店銷售該紀念冊所獲利潤最大,最大利潤是192元.18、(1)y=;(2)(4,0)或(0,0)【解析】
(1)把x=1代入一次函數(shù)解析式求得A的坐標,利用待定系數(shù)法求得反比例函數(shù)解析式;(2)解一次函數(shù)與反比例函數(shù)解析式組成的方程組求得B的坐標,后利用△ABP的面積為8,可求P點坐標.【詳解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=,可得k=1×2=6,∴反比例函數(shù)的解析式為y=;(2)根據(jù)題意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴點B的坐標為(﹣1,﹣6).設直線AB與x軸交于點C,y=2x﹣4中,令y=0,則x=2,即C(2,0),設P點坐標為(x,0),則×|x﹣2|×(2+6)=8,解得x=4或0,∴點P的坐標為(4,0)或(0,0).【點睛】本題主要考查用待定系數(shù)法求一次函數(shù)解析式,及一次函數(shù)與反比例函數(shù)交點的問題,聯(lián)立兩函數(shù)可求解。19、100米.【解析】【分析】如圖,作PC⊥AB于C,構造出Rt△PAC與Rt△PBC,求出AB的長度,利用特殊角的三角函數(shù)值進行求解即可得.【詳解】如圖,過P點作PC⊥AB于C,由題意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=,∴AC=PC,在Rt△PBC中,tan∠PBC=,∴BC=PC,∵AB=AC+BC=PC+PC=10×40=400,∴PC=100,答:建筑物P到賽道AB的距離為100米.【點睛】本題考查了解直角三角形的應用,正確添加輔助線構造直角三角形,利用特殊角的三角函數(shù)值進行解答是關鍵.20、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年產量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)今年最多可獲得毛利潤1080萬元【解析】
(1)利用待定系數(shù)法可求出y與x以及z與x之間的函數(shù)關系式;(1)根據(jù)(1)的表達式及毛利潤=銷售額﹣生產費用,可得出w與x的函數(shù)關系式,再利用配方法求出最值即可;(3)首先求出x的取值范圍,再利用二次函數(shù)增減性得出答案即可.【詳解】(1)圖①可得函數(shù)經過點(100,1000),設拋物線的解析式為y=ax1(a≠0),將點(100,1000)代入得:1000=10000a,解得:a=,故y與x之間的關系式為y=x1.圖②可得:函數(shù)經過點(0,30)、(100,10),設z=kx+b,則,解得:,故z與x之間的關系式為z=﹣x+30(0≤x≤100);(1)W=zx﹣y=﹣x1+30x﹣x1=﹣x1+30x=﹣(x1﹣150x)=﹣(x﹣75)1+1115,∵﹣<0,∴當x=75時,W有最大值1115,∴年產量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)令y=360,得x1=360,解得:x=±60(負值舍去),由圖象可知,當0<y≤360時,0<x≤60,由W=﹣(x﹣75)1+1115的性質可知,當0<x≤60時,W隨x的增大而增大,故當x=60時,W有最大值1080,答:今年最多可獲得毛利潤1080萬元.【點睛】本題主要考查二次函數(shù)的應用以及待定系數(shù)法求一次函數(shù)解析式,注意二次函數(shù)最值的求法,一般用配方法.21、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】
(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結論;(2)根據(jù)等腰三角形的性質得到∠3=∠COD=∠DEO=60°,根據(jù)平行線的性質得到∠4=∠1,根據(jù)全等三角形的性質得到∠CBO=∠CDO=90°,于是得到結論;(3)先判斷出△ABO≌△CDE得出AB=CD,即可判斷出四邊形ABCD是平行四邊形,最后判斷出CD=AD即可.【詳解】(1)如圖,連接OD,∵CD是⊙O的切線,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO與△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切線;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【點睛】此題主要考查了切線的性質,同角的余角相等,等腰三角形的性質,平行四邊形的判定和性質,菱形的判定,判斷出△ABO≌△CDE是解本題的關鍵.22、CD的長度為17﹣17cm.【解析】
在直角三角形中用三角函數(shù)求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【點睛】本題主要考查了在直角三角形中三角函數(shù)的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.23、(1)證明見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 3人工智能應用29課件
- 2025年STEAM教育在中小學的推廣模式與效果評價報告
- 地理●福建卷丨2024年福建省普通高中學業(yè)水平選擇性考試地理試卷及答案
- 三零五帶七抓管理體系
- 初中數(shù)學九年級下冊統(tǒng)編教案 5.1二次函數(shù)教案
- DeepSeek高教應用場景規(guī)劃方案
- 2025年全民創(chuàng)建衛(wèi)生城市知識競賽試題200題(附答案)
- 消防試題及答案
- 西方管理思想試題及答案
- 地理●全國甲卷丨2023年普通高等學校招生全國統(tǒng)一考試地理試卷及答案
- 環(huán)境藝術設計教學計劃
- 2025屆河南省許昌市名校高三下學期第二次模擬考試英語試題(原卷版+解析版)
- 融資租賃 測試題及答案
- 2025中國儲備糧管理集團有限公司貴州分公司招聘22人筆試參考題庫附帶答案詳解
- 蛛網膜下腔出血介入術后護理
- 千川合同協(xié)議
- 制造業(yè)智能排產系統(tǒng)(課件)
- 婚前拆遷婚內協(xié)議書
- 常州文化測試試題及答案
- 會考地理綜合題答題模板+簡答題歸納-2025年會考地理知識點梳理
- 預防VTE質控匯報演講
評論
0/150
提交評論