




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義運算,則函數的圖象是().A. B.C. D.2.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳習近平新時代中國特色社會主義思想為主要內容,立足全體黨員?面向全社會的優質平臺,現日益成為老百姓了解國家動態?緊跟時代脈搏的熱門?該款軟件主要設有“閱讀文章”?“視聽學習”兩個學習模塊和“每日答題”?“每周答題”?“專項答題”?“挑戰答題”四個答題模塊?某人在學習過程中,“閱讀文章”不能放首位,四個答題板塊中有且僅有三個答題板塊相鄰的學習方法有()A.60 B.192 C.240 D.4323.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數記為.則()A. B.C. D.4.已知實數、滿足約束條件,則的最大值為()A. B. C. D.5.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.6.復數的虛部是()A. B. C. D.7.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.8.函數在區間上的大致圖象如圖所示,則可能是()A.B.C.D.9.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-10.等腰直角三角形BCD與等邊三角形ABD中,,,現將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.11.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.212.“完全數”是一些特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.古希臘數學家畢達哥拉斯公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若方程的解為,(),則_______;_______.14.在中,內角所對的邊分別是,若,,則__________.15.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.16.若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統計,將數據按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.理科方向文科方向總計男110女50總計(1)根據已知條件完成下面列聯表,并據此判斷是否有99%的把握認為是否為“文科方向”與性別有關?(2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.19.(12分)已知函數,其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.20.(12分)設函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若函數的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.21.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.22.(10分)我國在2018年社保又出新的好消息,之前流動就業人員跨地區就業后,社保轉移接續的手續往往比較繁瑣,費時費力.社保改革后將簡化手續,深得流動就業人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續所需時間(天)與人數的頻數分布表:時間人數156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續所需時間與是否流動人員的列聯表,并判斷是否有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.列聯表如下流動人員非流動人員總計辦理社保手續所需時間不超過4天辦理社保手續所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.879
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.2.C【解析】
四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數為.故選:C.【點睛】本題考查排列組合的應用,考查捆綁法和插入法求解排列問題.對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.3.A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數,對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數就會出現三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.4.C【解析】
作出不等式組表示的平面區域,作出目標函數對應的直線,結合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內部,如下圖表示:當目標函數經過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規劃等基礎知識;考查運算求解能力,數形結合思想,應用意識,屬于中檔題.5.B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應填?故選:.【點睛】本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.6.C【解析】因為,所以的虛部是,故選C.7.A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數量積分拆,設,數量積轉化為關于t的函數,用函數可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉化為函數求最值。8.B【解析】
根據特殊值及函數的單調性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調,故排除C;故選:B【點睛】本題考查根據函數圖象選擇函數解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.9.C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發現∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.10.A【解析】
設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.11.D【解析】
根據拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸的交點為.根據拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線的定義,考查數形結合的數學思想方法,屬于基礎題.12.C【解析】
先求出五個“完全數”隨機分為兩組,一組2個,另一組3個的基本事件總數為,再求出6和28恰好在同一組包含的基本事件個數,根據即可求出6和28不在同一組的概率.【詳解】解:根據題意,將五個“完全數”隨機分為兩組,一組2個,另一組3個,則基本事件總數為,則6和28恰好在同一組包含的基本事件個數,∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數的應用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出在上的對稱軸,依據對稱性可得的值;由可得,依據可求出的值.【詳解】解:令,解得因為,所以關于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數的對稱軸,考查了誘導公式,考查了同角三角函數的基本關系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令進行求解.14.【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數的基本關系式,考查兩角和的正弦公式,考查三角形的內角和定理,屬于中檔題.15.【解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.16.【解析】
由,得出,根據兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)列聯表見解析,有;(2)分布列見解析,,.【解析】
(1)由頻率分布直方圖可得分數在、之間的學生人數,可得列聯表.根據列聯表計算的值,結合參考臨界值表可得到結論;(2)從該校高一學生中隨機抽取1人,求出該人為“文科方向”的概率.由題意,求出分布列,根據公式求出期望和方差.【詳解】(1)由頻率分布直方圖可得分數在之間的學生人數為,在之間的學生人數為,所以低于60分的學生人數為120.因此列聯表為理科方向文科方向總計男8030110女405090總計12080200又,所以有99%的把握認為是否為“文科方向”與性別有關.(2)易知從該校高一學生中隨機抽取1人,則該人為“文科方向”的概率為.依題意知,所以(),所以的分布列為0123P所以期望,方差.【點睛】本題考查獨立性檢驗,考查離散型隨機變量的分布列、期望和方差,屬于中檔題.18.(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結論;(Ⅱ)如圖,以O為坐標原點,建立空間直角坐標系,求的平面的一個法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O為坐標原點,分別以OC、OD、OF為x、y、z軸建立空間直角坐標系,則,,,,,,,設面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.19.(1)(2)證明見解析【解析】
(1)求導,代入,求出在處的導數值及函數值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當時,,,則在的切線方程為;(2)證明:令,解得或,①當時,恒成立,此時函數在上單調遞減,∴函數無極值;②當時,令,解得,令,解得或,∴函數在上單調遞增,在,上單調遞減,∴;③當時,令,解得,令,解得或,∴函數在上單調遞增,在,上單調遞減,∴,綜上,函數的極大值恒大于0.【點睛】本小題主要考查利用導數求切線方程,考查利用導數研究函數的極值,考查分類討論的數學思想方法,屬于中檔題.20.(1)(2)【解析】
(Ⅰ)當時,不等式為.若,則,解得或,結合得或.若,則,不等式恒成立,結合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡得,解得,結合,得的取值范圍為.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫療行業人才培養體系現狀分析及2025年改革策略研究報告001
- 2025年工業互聯網平臺網絡安全態勢感知技術政策法規解讀報告001
- 老年教育課程體系優化與情境教學法的創新實踐報告001
- 保潔勞務分包合同
- 基于2025年互聯網數據中心建設的初步設計評估與數據中心選址分析報告001
- 數字文化產業發展報告:2025年商業模式創新與文化產業發展與區域文化特色結合
- 深度研究:2025年天然氣勘探開發市場前景及投資策略報告
- 2025年新能源微電網穩定性控制與微電網電力市場交易策略報告
- 化妝品消費者對產品促銷的響應度考核試卷
- 安全風險評估與組織文化適應性分析考核試卷
- 供應商綠色環保環境管理體系評估表
- GB∕T 11344-2021 無損檢測 超聲測厚
- 滬教牛津版小學一至六年級英語單詞匯總(最新)
- 《云南省建筑工程資料管理規程應用指南)(上下冊)
- 數列求和中常見放縮方法和技巧(含答案)
- 寶興縣中藥材生產現狀及發展思路
- 臺州市幼兒園教師考核表.
- 小兒霧化吸入課件.ppt
- TM92成品鞋彎折測試
- 鎖骨骨折幻燈片
- 高填方、深挖路塹邊坡和軟基監測方案
評論
0/150
提交評論