2023屆遼寧省撫順市名校中考數學押題卷含解析_第1頁
2023屆遼寧省撫順市名校中考數學押題卷含解析_第2頁
2023屆遼寧省撫順市名校中考數學押題卷含解析_第3頁
2023屆遼寧省撫順市名校中考數學押題卷含解析_第4頁
2023屆遼寧省撫順市名校中考數學押題卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將四根長度相等的細木條首尾相連,用釘子釘成四邊形,轉動這個四邊形,使它形狀改變,當,時,等于()A. B. C. D.2.如圖,AB∥CD,點E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°3.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了4.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.35.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m36.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數字表示在該位置上的小正方體的個數,那么,這個幾何體的左視圖是()A. B. C. D.7.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數為()A.34° B.56° C.66° D.54°8.如圖,用一個半徑為6cm的定滑輪帶動重物上升,假設繩索(粗細不計)與滑輪之間沒有滑動,繩索端點G向下移動了3πcm,則滑輪上的點F旋轉了()A.60° B.90° C.120° D.45°9.用配方法解方程時,可將方程變形為()A. B. C. D.10.下列運算結果正確的是()A.a3+a4=a7 B.a4÷a3=a C.a3?a2=2a3 D.(a3)3=a6二、填空題(共7小題,每小題3分,滿分21分)11.三個小伙伴各出資a元,共同購買了價格為b元的一個籃球,還剩下一點錢,則剩余金額為__元(用含a、b的代數式表示)12.中國古代的數學專著《九章算術》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據題意,可得方程組為___.13.閱讀以下作圖過程:第一步:在數軸上,點O表示數0,點A表示數1,點B表示數5,以AB為直徑作半圓(如圖);第二步:以B點為圓心,1為半徑作弧交半圓于點C(如圖);第三步:以A點為圓心,AC為半徑作弧交數軸的正半軸于點M.請你在下面的數軸中完成第三步的畫圖(保留作圖痕跡,不寫畫法),并寫出點M表示的數為______.14.如果關于x的方程(m為常數)有兩個相等實數根,那么m=______.15.如圖,已知P是線段AB的黃金分割點,且PA>PB.若S1表示以PA為一邊的正方形的面積,S2表示長是AB、寬是PB的矩形的面積,則S1_______S2.(填“>”“="”“"<”)16.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結論有_____.(填寫所有正確結論的序號)17.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數,從中任意抽出一張卡片,卡片上的數是3的倍數的概率是三、解答題(共7小題,滿分69分)18.(10分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.19.(5分)已知四邊形ABCD為正方形,E是BC的中點,連接AE,過點A作∠AFD,使∠AFD=2∠EAB,AF交CD于點F,如圖①,易證:AF=CD+CF.(1)如圖②,當四邊形ABCD為矩形時,其他條件不變,線段AF,CD,CF之間有怎樣的數量關系?請寫出你的猜想,并給予證明;(2)如圖③,當四邊形ABCD為平行四邊形時,其他條件不變,線段AF,CD,CF之間又有怎樣的數量關系?請直接寫出你的猜想.圖①圖②圖③20.(8分)“C919”大型客機首飛成功,激發了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數據不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據圖中數據,求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結果保留小數點后一位)21.(10分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內,∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)22.(10分)如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BE交AD于點F.求證:DF2=EF?BF.23.(12分)如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點C作AD的垂線EF交直線AD于點E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.24.(14分)如圖,在平面直角坐標系中,拋物線y=x2+mx+n經過點A(3,0)、B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設點P的橫坐標為t.分別求出直線AB和這條拋物線的解析式.若點P在第四象限,連接AM、BM,當線段PM最長時,求△ABM的面積.是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標;若不存在,請說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

首先連接AC,由將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,AB=1,,易得△ABC是等邊三角形,即可得到答案.【詳解】連接AC,

∵將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,

∴AB=BC,

∵,

∴△ABC是等邊三角形,

∴AC=AB=1.

故選:B.【點睛】本題考點:菱形的性質.2、B【解析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點:1.平行線的性質;2.平角性質.3、A【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點作答.【詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【點睛】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關鍵是熟練的掌握正方體相對兩個面上的文字.4、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質、等邊三角形的判定與性質、等腰三角形的性質、直角三角形的性質以及三角函數等知識,準確添加輔助線,掌握折疊前后圖形的對應關系是解題的關鍵.5、C【解析】

根據同底數冪的除法,底數不變指數相減;合并同類項,系數相加字母和字母的指數不變;同底數冪的乘法,底數不變指數相加;冪的乘方,底數不變指數相乘,對各選項計算后利用排除法求解.【詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【點睛】本題考查同底數冪的除法,合并同類項,同底數冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.6、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.7、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.8、B【解析】

由弧長的計算公式可得答案.【詳解】解:由圓弧長計算公式,將l=3π代入,可得n=90,故選B.【點睛】本題主要考查圓弧長計算公式,牢記并運用公式是解題的關鍵.9、D【解析】

配方法一般步驟:將常數項移到等號右側,左右兩邊同時加一次項系數一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關鍵.10、B【解析】

分別根據同底數冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.二、填空題(共7小題,每小題3分,滿分21分)11、(3a﹣b)【解析】解:由題意可得,剩余金額為:(3a-b)元,故答案為:(3a-b).點睛:本題考查列代數式,解答本題的關鍵是明確題意,列出相應的代數式.12、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.13、作圖見解析,【解析】解:如圖,點M即為所求.連接AC、BC.由題意知:AB=4,BC=1.∵AB為圓的直徑,∴∠ACB=90°,則AM=AC===,∴點M表示的數為.故答案為.點睛:本題主要考查作圖﹣尺規作圖,解題的關鍵是熟練掌握尺規作圖和圓周角定理及勾股定理.14、1【解析】析:本題需先根據已知條件列出關于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m為常數)有兩個相等實數根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案為115、=.【解析】

黃金分割點,二次根式化簡.【詳解】設AB=1,由P是線段AB的黃金分割點,且PA>PB,根據黃金分割點的,AP=,BP=.∴.∴S1=S1.16、①②④.【解析】

根據菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質一一判斷即可.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯誤,設△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.【點睛】此題考查平行四邊形的性質、菱形的判定和性質、平行線分線段成比例定理、等高模型等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數解決問題.17、.【解析】

分別求出從1到6的數中3的倍數的個數,再根據概率公式解答即可.【詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數,從中任意抽出一張卡片,共有6種結果,其中卡片上的數是3的倍數的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數是3的倍數的概率是.故答案為【點睛】考查了概率公式,用到的知識點為:概率=所求情況數與總情況數之比.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長.試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四邊形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=,設PN=12b,則AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN===.19、(1)圖②結論:AF=CD+CF.(2)圖③結論:AF=CD+CF.【解析】試題分析:(1)作,的延長線交于點.證三角形全等,進而通過全等三角形的對應邊相等驗證之間的關系;(2)延長交的延長線于點由全等三角形的對應邊相等驗證關系.試題解析:(1)圖②結論:證明:作,的延長線交于點.∵四邊形是矩形,由是中點,可證≌(2)圖③結論:延長交的延長線于點如圖所示因為四邊形是平行四邊形所以//且,因為為的中點,所以也是的中點,所以又因為所以又因為所以≌所以因為20、線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【解析】試題分析:在Rt△BED中可先求得BE的長,過C作CF⊥AE于點F,則可求得AF的長,從而可求得EF的長,即可求得CD的長.試題解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE?tan∠BDE≈18.75(cm),如圖,過C作AE的垂線,垂足為F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四邊形CDEF為矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【點睛】本題考查了解直角三角形的應用,正確地添加輔助線構造直角三角形是解題的關鍵.21、(1)i)證明見試題解析;ii);(2);(3).【解析】

(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【點睛】本題考查相似三角形的判定與性質;正方形的性質;矩形的性質;菱形的性質.22、見解析【解析】

證明△FDE∽△FBD即可解決問題.【詳解】解:∵四邊形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共邊,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四邊形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴=,即DF2=EF?BF.【點睛】本題考查了相似三角形的判定與性質,和正方形的性質,正確理解正方形的性質是關鍵.23、(1)證明見解析(2)【解析】

(1)連接OC,根據等腰三角形的性質、平行線的判定得到OC∥AE,得到OC⊥EF,根據切線的判定定理證明;(2)根據勾股定理求出AC,證明△AEC∽△ACB,根據相似三角形的性質列出比例式,計算即可.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論