




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,若銳角△ABC內接于⊙O,點D在⊙O外(與點C在AB同側),則∠C與∠D的大小關系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定2.不等式3x≥x-5的最小整數解是()A.-3 B.-2 C.-1 D.23.計算-5+1的結果為()A.-6 B.-4 C.4 D.64.如圖是一個由4個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.5.自2013年10月總書記提出“精準扶貧”的重要思想以來.各地積極推進精準扶貧,加大幫扶力度.全國脫貧人口數不斷增加.僅2017年我國減少的貧困人口就接近1100萬人.將1100萬人用科學記數法表示為()A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人6.在海南建省辦經濟特區30周年之際,中央決定創建海南自貿區(港),引發全球高度關注.據統計,4月份互聯網信息中提及“海南”一詞的次數約48500000次,數據48500000科學記數法表示為()A.485×105B.48.5×106C.4.85×107D.0.485×1087.某校舉行運動會,從商場購買一定數量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數量與用350元購買筆袋的數量相同.設每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.8.如圖,△ABC是⊙O的內接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數是()A.45° B.85° C.90° D.95°9.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐10.下列“數字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個11.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.12.下列運算正確的是()A.a3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:6﹣=_____14.如圖,已知雙曲線經過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(-6,4),則△AOC的面積為.15.如圖,在平面直角坐標系中,反比例函數y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.16.某校準備從甲、乙、丙、丁四個科創小組中選出一組,參加區青少年科技創新大賽,表格反映的是各組平時成績的平均數(單位:分)及方差S2,如果要選出一個成績較好且狀態穩定的組去參賽,那么應選的組是_____.甲乙丙丁7887s211.20.91.817.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是_____.18.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據調查結果繪制了如下不完整的頻數分布表和扇形統計圖:運動項目
頻數(人數)
羽毛球
30
籃球
乒乓球
36
排球
足球
12
請根據以上圖表信息解答下列問題:頻數分布表中的,;在扇形統計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?20.(6分)已知關于的一元二次方程(為實數且).求證:此方程總有兩個實數根;如果此方程的兩個實數根都是整數,求正整數的值.21.(6分)在平面直角坐標系中,關于的一次函數的圖象經過點,且平行于直線.(1)求該一次函數表達式;(2)若點Q(x,y)是該一次函數圖象上的點,且點Q在直線的下方,求x的取值范圍.22.(8分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.23.(8分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉,使得點的對應點落在射線上,連接,設(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數量關系,并加以證明;(2)當時,直接寫出線段,,之間的數量關系.24.(10分)已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.(1)求點D的坐標.(2)求點M的坐標(用含a的代數式表示).(3)當點N在第一象限,且∠OMB=∠ONA時,求a的值.25.(10分)對于某一函數給出如下定義:若存在實數p,當其自變量的值為p時,其函數值等于p,則稱p為這個函數的不變值.在函數存在不變值時,該函數的最大不變值與最小不變值之差q稱為這個函數的不變長度.特別地,當函數只有一個不變值時,其不變長度q為零.例如:下圖中的函數有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G2,函數G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.26.(12分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯結AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.27.(12分)如圖,AB=AD,AC=AE,BC=DE,點E在BC上.求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
直接利用圓周角定理結合三角形的外角的性質即可得.【詳解】連接BE,如圖所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故選:A.【點睛】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關鍵.2、B【解析】
先求出不等式的解集,然后從解集中找出最小整數即可.【詳解】∵3x≥x-5,∴3x-x≥-5,∴x≥-5∴不等式3x≥x-5的最小整數解是x=-2.故選B.【點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.最后一步系數化為1時,如果未知數的系數是負數,則不等號的方向要改變,如果系數是正數,則不等號的方不變.3、B【解析】
根據有理數的加法法則計算即可.【詳解】解:-5+1=-(5-1)=-1.故選B.【點睛】本題考查了有理數的加法.4、D【解析】
從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,據此解答即可.【詳解】∵從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,∴D是該幾何體的主視圖.故選D.【點睛】本題考查三視圖的知識,從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.5、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:1100萬=11000000=1.1×107.故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、C【解析】
依據科學記數法的含義即可判斷.【詳解】解:48511111=4.85×117,故本題選擇C.【點睛】把一個數M記成a×11n(1≤|a|<11,n為整數)的形式,這種記數的方法叫做科學記數法.規律:(1)當|a|≥1時,n的值為a的整數位數減1;(2)當|a|<1時,n的值是第一個不是1的數字前1的個數,包括整數位上的1.7、B【解析】試題分析:設每個筆記本的價格為x元,根據“用200元購買筆記本的數量與用350元購買筆袋的數量相同”這一等量關系列出方程即可.考點:由實際問題抽象出分式方程8、B【解析】
解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關系.9、D【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂的圓心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力以及對立體圖形的認識.10、C【解析】
根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、D【解析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.12、D【解析】試題分析:根據同底數冪相乘,底數不變指數相加求解求解;根據積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據完全平方公式求解;根據合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數冪的乘法,積的乘方的性質,熟記性質與公式并理清指數的變化是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】
按照二次根式的運算法則進行運算即可.【詳解】【點睛】本題考查的知識點是二次根式的運算,解題關鍵是注意化簡算式.14、2【解析】解:∵OA的中點是D,點A的坐標為(﹣6,4),∴D(﹣1,2),∵雙曲線y=經過點D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.15、1【解析】
連接OB,由矩形的性質和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【點睛】本題考查了反比例函數的系數k的幾何意義:在反比例函數y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.16、丙【解析】
先比較平均數得到乙組和丙組成績較好,然后比較方差得到丙組的狀態穩定,于是可決定選丙組去參賽.【詳解】因為乙組、丙組的平均數比甲組、丁組大,而丙組的方差比乙組的小,所以丙組的成績比較穩定,所以丙組的成績較好且狀態穩定,應選的組是丙組.故答案為丙.【點睛】本題考查了方差:一組數據中各數據與它們的平均數的差的平方的平均數,叫做這組數據的方差.方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好.也考查了平均數的意義.17、【解析】如圖,有5種不同取法;故概率為.18、1【解析】
根據弧長公式l=代入求解即可.【詳解】解:∵,∴.故答案為1.【點睛】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)24,1;(2)54;(3)360.【解析】
(1)根據選擇乒乓球運動的人數是36人,對應的百分比是30%,即可求得總人數,然后利用百分比的定義求得a,用總人數減去其它組的人數求得b;(2)利用360°乘以對應的百分比即可求得;(3)求得全校總人數,然后利用總人數乘以對應的百分比求解.【詳解】(1)抽取的人數是36÷30%=120(人),則a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圓心角為360°×=54°,故答案是:54;(3)全校總人數是120÷10%=1200(人),則選擇參加乒乓球運動的人數是1200×30%=360(人).20、(1)證明見解析;(2)或.【解析】
(1)求出△的值,再判斷出其符號即可;(2)先求出x的值,再由方程的兩個實數根都是整數,且m是正整數求出m的值即可.【詳解】(1)依題意,得,,.∵,∴方程總有兩個實數根.(2)∵,∴,.∵方程的兩個實數根都是整數,且是正整數,∴或.∴或.【點睛】本題考查的是根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac的關系是解答此題的關鍵.21、(1);(2).【解析】
(1)由題意可設該一次函數的解析式為:,將點M(4,7)代入所設解析式求出b的值即可得到一次函數的解析式;(2)根據直線上的點Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結果.【詳解】解:(1)∵一次函數平行于直線,∴可設該一次函數的解析式為:,∵直線過點M(4,7),∴8+b=7,解得b=-1,∴一次函數的解析式為:y=2x-1;(2)∵點Q(x,y)是該一次函數圖象上的點,∴y=2x-1,又∵點Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【點睛】本題考查了待定系數法求一次函數的解析式以及一次函數與不等式的關系,屬于??碱}型,熟練掌握待定系數法與一次函數與不等式的關系是解題的關鍵.22、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解析】
(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據AE=B′E,可得∠EAB′=∠EB′A,再根據∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【點睛】本題屬于四邊形綜合題,主要考查了折疊的性質,等邊三角形的性質,正方形的判定與性質以及勾股定理的綜合運用,解題的關鍵是設要求的線段長為x,然后根據折疊和軸對稱的性質用含x的代數式表示其他線段的長度,選擇適當的直角三角形,運用勾股定理列出方程求出答案.23、(1)①;②;(2)【解析】
(1)①先根據等邊三角形的性質的,進而得出,最后用三角形的內角和定理即可得出結論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構造出直角三角形即可得出結論;(2)同②的方法即可得出結論.【詳解】(1)當時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,∴;②;如圖2,延長到點,使得,連接,作于點.∵,點在上,∴.∵點在的延長線上,,∴.∴.又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當時,在上取一點使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點,∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,∴.∴.【點睛】此題是幾何變換綜合題,主要考查了等邊三角形的性質,三角形的內角和定理,全等三角形的判定和性質,等腰三角形的判定和性質,銳角三角函數,作出輔助線構造出全等三角形是解本題的關鍵.24、(1)D(2,2);(2);(3)【解析】
(1)令x=0求出A的坐標,根據頂點坐標公式或配方法求出頂點B的坐標、對稱軸直線,根據點A與點D關于對稱軸對稱,確定D點坐標.(2)根據點B、D的坐標用待定系數法求出直線BD的解析式,令y=0,即可求得M點的坐標.(3)根據點A、B的坐標用待定系數法求出直線AB的解析式,求直線OD的解析式,進而求出交點N的坐標,得到ON的長.過A點作AE⊥OD,可證△AOE為等腰直角三角形,根據OA=2,可求得AE、OE的長,表示出EN的長.根據tan∠OMB=tan∠ONA,得到比例式,代入數值即可求得a的值.【詳解】(1)當x=0時,,∴A點的坐標為(0,2)∵∴頂點B的坐標為:(1,2-a),對稱軸為x=1,∵點A與點D關于對稱軸對稱∴D點的坐標為:(2,2)(2)設直線BD的解析式為:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直線BD的解析式為:y=ax+2-2a當y=0時,ax+2-2a=0,解得:x=∴M點的坐標為:(3)由D(2,2)可得:直線OD解析式為:y=x設直線AB的解析式為y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直線AB的解析式為y=-ax+2聯立成方程組:,解得:∴N點的坐標為:()ON=()過A點作AE⊥OD于E點,則△AOE為等腰直角三角形.∵OA=2∴OE=AE=,EN=ON-OE=()-=)∵M,C(1,0),B(1,2-a)∴MC=,BE=2-a∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴,即解得:a=或∵拋物線開口向下,故a<0,∴a=舍去,【點睛】本題是一道二次函數與一次函數及三角函數綜合題,掌握并靈活應用二次函數與一次函數的圖象與性質,以及構建直角三角形借助點的坐標使用相等角的三角函數是解題的關鍵.25、詳見解析.【解析】試題分析:(1)根據定義分別求解即可求得答案;(1)①首先由函數y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,可得函數G的圖象關于x=m對稱,然后根據定義分別求得函數的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數y=x﹣1,令y=x,則x﹣1=x,無解;∴函數y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數的不變值為±1,q=1﹣(﹣1)=1.∵函數y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,∴函數G的圖象關于x=m對稱,∴G:y=.∵當x1﹣1x=x時,x3=2,x4=3;當(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當△<2,即m<﹣時,q=x4﹣x3=3;當△≥2,即m≥﹣時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州鼎信科技java面試題及答案
- 法律實務民法刑法知識點習題集
- 現代物理概念題集
- 西方政治制度的全球治理參與試題及答案
- 測試結果分析與總結技巧試題及答案
- 項目的利益相關者管理試題及答案
- 大眾傳播學對公共政策的啟示試題及答案
- 公共政策的實施與評估新方法試題及答案
- 西方國家政治外交中的倫理規范試題及答案
- 機電工程師學術交流的重要性與試題與答案
- 化工廠光化車間停車檢修施工方案
- 鋁粉采購合同
- 廣州市主要河道采砂技術方案
- 中國基建課件教學課件
- EPC光伏項目投標方案(技術方案)
- 2023企業數字化轉型建設方案數據中臺、業務中臺、AI中臺
- 國家開放大學本科《人文英語3》一平臺機考真題及答案(第二套)
- 廣西壯族自治區南寧市2023-2024學年八年級下學期7月期末歷史試題(無答案)
- 江蘇省揚州市2023-2024學年高二下學期6月期末考試歷史試題
- 初中必背古詩文
- 教科版四年級下冊科學期末測試卷含答案【研優卷】
評論
0/150
提交評論