2023屆湖南省郴州市高三3月份模擬考試數學試題含解析_第1頁
2023屆湖南省郴州市高三3月份模擬考試數學試題含解析_第2頁
2023屆湖南省郴州市高三3月份模擬考試數學試題含解析_第3頁
2023屆湖南省郴州市高三3月份模擬考試數學試題含解析_第4頁
2023屆湖南省郴州市高三3月份模擬考試數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數的最小正周期是B.函數的圖象關于點成中心對稱C.函數在單調遞增D.函數的圖象向右平移后關于原點成中心對稱2.數學中有許多形狀優美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結論的序號是()A.①② B.①③ C.①③④ D.①②④3.數列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.44.已知,函數在區間內沒有最值,給出下列四個結論:①在上單調遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④5.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.6.在區間上隨機取一個數,使得成立的概率為等差數列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.117.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.8.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.9.若實數x,y滿足條件,目標函數,則z的最大值為()A. B.1 C.2 D.010.如果實數滿足條件,那么的最大值為()A. B. C. D.11.已知等差數列的前n項和為,且,則()A.4 B.8 C.16 D.212.高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,用其名字命名的“高斯函數”為:設,用表示不超過的最大整數,則稱為高斯函數,例如:,,已知函數(),則函數的值域為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內的交點為,且,則雙曲線的離心率為__________.14.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.15.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.16.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.18.(12分)在綜合素質評價的某個維度的測評中,依據評分細則,學生之間相互打分,最終將所有的數據合成一個分數,滿分100分,按照大于或等于80分的為優秀,小于80分的為合格,為了解學生的在該維度的測評結果,在畢業班中隨機抽出一個班的數據.該班共有60名學生,得到如下的列聯表:優秀合格總計男生6女生18合計60已知在該班隨機抽取1人測評結果為優秀的概率為.(1)完成上面的列聯表;(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結果有關系?(3)現在如果想了解全校學生在該維度的表現情況,采取簡單隨機抽樣方式在全校學生中抽取少數一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02419.(12分)已知函數,設的最小值為m.(1)求m的值;(2)是否存在實數a,b,使得,?并說明理由.20.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.21.(12分)某百貨商店今年春節期間舉行促銷活動,規定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數越來越多,該商店經理對春節前天參加抽獎活動的人數進行統計,表示第天參加抽獎活動的人數,得到統計表格如下:123456758810141517(1)經過進一步統計分析,發現與具有線性相關關系.請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;(2)該商店規定:若抽中“一等獎”,可領取600元購物券;抽中“二等獎”可領取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等獎”的概率為.現有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數學期望.參考公式:,,,.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據函數的圖象,求得函數,再根據正弦型函數的性質,即可求解,得到答案.【詳解】根據給定函數的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數的一個對稱中心為,即函數的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數的圖象求解函數的解析式,以及三角函數的圖象與性質,其中解答中根據函數的圖象求得三角函數的解析式,再根據三角函數的圖象與性質求解是解答的關鍵,著重考查了數形結合思想,以及運算與求解能力,屬于基礎題.2、C【解析】

①利用之間的代換判斷出對稱軸的條數;②利用基本不等式求解出到原點的距離最大值;③將面積轉化為的關系式,然后根據基本不等式求解出最大值;④根據滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【詳解】①:當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.3、D【解析】

用去換中的n,得,相加即可找到數列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數列是以6為周期的周期數列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.4、A【解析】

先根據函數在區間內沒有最值求出或.再根據已知求出,判斷函數的單調性和零點情況得解.【詳解】因為函數在區間內沒有最值.所以,或解得或.又,所以.令.可得.且在上單調遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數的圖象和性質,考查函數的零點問題,意在考查學生對這些知識的理解掌握水平.5、D【解析】

如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關系,意在考查學生的空間想象能力和計算能力.6、D【解析】

由題意,本題符合幾何概型,只要求出區間的長度以及使不等式成立的的范圍區間長度,利用幾何概型公式可得概率,即等差數列的公差,利用條件,求得,從而求得,解不等式求得結果.【詳解】由題意,本題符合幾何概型,區間長度為6,使得成立的的范圍為,區間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數列的通項公式,屬于基礎題目.7、A【解析】

設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉化成關于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.8、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據三視圖判斷幾何體的形狀及相關幾何量的數據是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.9、C【解析】

畫出可行域和目標函數,根據平移得到最大值.【詳解】若實數x,y滿足條件,目標函數如圖:當時函數取最大值為故答案選C【點睛】求線性目標函數的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.10、B【解析】

解:當直線過點時,最大,故選B11、A【解析】

利用等差的求和公式和等差數列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數列的求和公式和等差數列的性質,考查基本量的計算,難度容易.12、B【解析】

利用換元法化簡解析式為二次函數的形式,根據二次函數的性質求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據橢圓得出焦距,結合橢圓的定義求出,結合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:【點睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.14、【解析】

由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.15、【解析】

根據圓的性質可知在線段的垂直平分線上,由此得到,同理可得,由對數運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關鍵是能夠利用圓的性質和對數運算法則構造出滿足的方程,由此得到結果.16、【解析】

計算出角的取值范圍,結合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數圖象和性質,考查了轉化思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)在曲線的參數方程中消去參數,可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數方程、極坐標方程與普通方程之間的相互轉換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.18、(1)見解析;(2)在犯錯誤的概率不超過0.10的前提下認為“性別與測評結果有關系”(3)見解析.【解析】

(1)由已知抽取的人中優秀人數為20,這樣結合已知可得列聯表;(2)根據列聯表計算,比較后可得;(3)由于性別對結果有影響,因此用分層抽樣法.【詳解】解:(1)優秀合格總計男生62228女生141832合計204060(2)由于,因此在犯錯誤的概率不超過0.10的前提下認為“性別與測評結果有關系”.(3)由(2)可知性別有可能對是否優秀有影響,所以采用分層抽樣按男女生比例抽取一定的學生,這樣得到的結果對學生在該維度的總體表現情況會比較符合實際情況.【點睛】本題考查獨立性檢驗,考查分層抽樣的性質.考查學生的數據處理能力.屬于中檔題.19、(1)(2)不存在;詳見解析【解析】

(1)將函數去絕對值化為分段函數的形式,從而可求得函數的最小值,進而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號,,不成立;或,異號,,不成立;故不存在實數,,使得,.【點睛】本題考查了分段函數的最值、基本不等式的應用,屬于基礎題.20、(1).(2).【解析】

(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設,0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,∵AD=2,AB=AF=2EF=2,P是DF的中點,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),設P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論