2023屆廣東省陽江市陽春八甲中學中考一模數學試題含解析_第1頁
2023屆廣東省陽江市陽春八甲中學中考一模數學試題含解析_第2頁
2023屆廣東省陽江市陽春八甲中學中考一模數學試題含解析_第3頁
2023屆廣東省陽江市陽春八甲中學中考一模數學試題含解析_第4頁
2023屆廣東省陽江市陽春八甲中學中考一模數學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.將5570000用科學記數法表示正確的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×1082.的值等于()A. B. C. D.3.下列運算正確的是()A.6-3=3B.-32=﹣3C.a?a2=a2D.(2a4.已知為單位向量,=,那么下列結論中錯誤的是()A.∥ B. C.與方向相同 D.與方向相反5.“綠水青山就是金山銀山”.某工程隊承接了60萬平方米的荒山綠化任務,為了迎接雨季的到來,實際工作時每天的工作效率比原計劃提高了25%,結果提前30天完成了這一任務.設實際工作時每天綠化的面積為x萬平方米,則下面所列方程中正確的是()A. B.C. D.6.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.87.下面的幾何體中,主(正)視圖為三角形的是()A. B. C. D.8.據統計,第22屆冬季奧林匹克運動會的電視轉播時間長達88000小時,社交網站和國際奧委會官方網站也創下冬奧會收看率紀錄.用科學記數法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1069.隨著“三農”問題的解決,某農民近兩年的年收入發生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據①②③三種農作物每種作物每年的收入占該年年收入的比例繪制的扇形統計圖.依據統計圖得出的以下四個結論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農作物的收入10.如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設點I為對稱軸的交點,如圖2,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當它第一次回到起始位置時,這個圖形在運動中掃過區域面積是()A.18π B.27π C.π D.45π11.某工廠第二季度的產值比第一季度的產值增長了x%,第三季度的產值又比第二季度的產值增長了x%,則第三季度的產值比第一季度的產值增長了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%12.某校為了了解七年級女同學的800米跑步情況,隨機抽取部分女同學進行800米跑測試,按照成績分為優秀、良好、合格、不合格四個等級,繪制了如圖所示統計圖.該校七年級有400名女生,則估計800米跑不合格的約有()A.2人 B.16人C.20人 D.40人二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.14.若一元二次方程有兩個不相等的實數根,則k的取值范圍是.15.兩圓內切,其中一個圓的半徑長為6,圓心距等于2,那么另一個圓的半徑長等于__.16.二次函數y=ax2+bx+c的圖象如圖所示,以下結論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減小;⑥a+b+c>0中,正確的有______.(只填序號)17.某?!鞍僮兡Х健鄙鐖F為組織同學們參加學??萍脊澋摹白顝姶竽X”大賽,準備購買A,B兩款魔方.社長發現若購買2個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同.求每款魔方的單價.設A款魔方的單價為x元,B款魔方的單價為y元,依題意可列方程組為_______.18.同一個圓的內接正方形和正三角形的邊心距的比為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);20.(6分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關聯點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關聯點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關聯點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關聯點”,求n的取值范圍.21.(6分)目前節能燈在城市已基本普及,今年某省面向農村地區推廣,為響應號召,某商場用3300元購進節能燈100只,這兩種節能燈的進價、售價如表:進價元只售價元只甲種節能燈3040乙種節能燈3550求甲、乙兩種節能燈各進多少只?全部售完100只節能燈后,該商場獲利多少元?22.(8分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數量不少于A型無人機的數量的2倍.設購進A型無人機x臺,總費用為y元.①求y與x的關系式;②購進A型、B型無人機各多少臺,才能使總費用最少?23.(8分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當∠B=______度時,以O,D,E,C為頂點的四邊形是正方形.24.(10分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.25.(10分)如圖1,圖2分別是某款籃球架的實物圖與示意圖,已知底座BC=1.5米,底座BC與支架AC所成的角∠ACB=60°,支架AF的長為2.50米,籃板頂端F點到籃筐D的距離FD=1.3米,籃板底部支架HE與支架AF所成的角∠FHE=45°,求籃筐D到地面的距離.(精確到0.01米參考數據:≈1.73,≈1.41)26.(12分)已知頂點為A的拋物線y=a(x-)2-2經過點B(-,2),點C(,2).(1)求拋物線的表達式;(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標.27.(12分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于5570000有7位,所以可以確定n=7﹣1=1.【詳解】5570000=5.57×101所以B正確2、C【解析】試題解析:根據特殊角的三角函數值,可知:故選C.3、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.4、C【解析】

由向量的方向直接判斷即可.【詳解】解:為單位向量,=,所以與方向相反,所以C錯誤,故選C.【點睛】本題考查了向量的方向,是基礎題,較簡單.5、C【解析】分析:設實際工作時每天綠化的面積為x萬平方米,根據工作時間=工作總量÷工作效率結合提前30天完成任務,即可得出關于x的分式方程.詳解:設實際工作時每天綠化的面積為x萬平方米,則原來每天綠化的面積為萬平方米,依題意得:,即.故選C.點睛:考查了由實際問題抽象出分式方程.找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.6、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.7、C【解析】

解:圓柱的主視圖是矩形,正方體的主視圖是正方形,圓錐的主視圖是三角形,三棱柱的主視圖是寬相等兩個相連的矩形.故選C.8、B【解析】試題分析:根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數法.9、C【解析】

A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統計圖,解題的關鍵是掌握扇形統計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數,并且通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.10、B【解析】

先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【點睛】本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.11、D【解析】設第一季度的原產值為a,則第二季度的產值為,第三季度的產值為,則則第三季度的產值比第一季度的產值增長了故選D.12、C【解析】

先求出800米跑不合格的百分率,再根據用樣本估計總體求出估值.【詳解】400×人.故選C.【點睛】考查了頻率分布直方圖,以及用樣本估計總體,關鍵是從上面可得到具體的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】

將PA+PB轉化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉化PA+PC的值,從而找出其最小值求解.14、:k<1.【解析】

∵一元二次方程有兩個不相等的實數根,∴△==4﹣4k>0,解得:k<1,則k的取值范圍是:k<1.故答案為k<1.15、4或1【解析】∵兩圓內切,一個圓的半徑是6,圓心距是2,∴另一個圓的半徑=6-2=4;或另一個圓的半徑=6+2=1,故答案為4或1.【點睛】本題考查了根據兩圓位置關系來求圓的半徑的方法.注意圓的半徑是6,要分大圓和小圓兩種情況討論.16、①②③⑤【解析】

根據圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=∴abc>0,4ac<b2,當時,y隨x的增大而減?。盛佗冖菡_,∵∴2a+b>0,故③正確,由圖象可得頂點縱坐標小于﹣2,則④錯誤,當x=1時,y=a+b+c<0,故⑥錯誤故答案為:①②③⑤【點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.17、【解析】分析:設A款魔方的單價為x元,B魔方單價為y元,根據“購買兩個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同”,即可得出關于x,y的二元一次方程組,此題得解.解:設A魔方的單價為x元,B款魔方的單價為y元,根據題意得:故答案為點睛:本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.18、【解析】

先畫出同一個圓的內接正方形和內接正三角形,設⊙O的半徑為R,求出正方形的邊心距和正三角形的邊心距,再求出比值即可.【詳解】設⊙O的半徑為r,⊙O的內接正方形ABCD,如圖,過O作OQ⊥BC于Q,連接OB、OC,即OQ為正方形ABCD的邊心距,∵四邊形BACD是正方形,⊙O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;設⊙O的內接正△EFG,如圖,過O作OH⊥FG于H,連接OG,即OH為正△EFG的邊心距,∵正△EFG是⊙O的外接圓,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案為:1.【點睛】本題考查了正多邊形與圓、解直角三角形,等邊三角形的性質、正方形的性質等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;(2)2a+2【解析】

(1)根據特殊角銳角三角函數值、絕對值的性質即可求出答案;(2)先化簡原式,然后將x的值代入原式即可求出答案.【詳解】解:(1)原式=﹣1+2﹣+2×=1;(2)原式=a2+2a+1+1﹣a2=2a+2.【點睛】本題考查學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.20、(1)正方形ABCD的“關聯點”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關聯點”中正方形的內切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關聯點”,所以E在正方形ABCD的內切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標,再根據對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關聯點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標;②M如圖4中,落在大⊙Q上,求出點Q的橫坐標即可解決問題;【詳解】(1)由題意正方形ABCD的“關聯點”中正方形的內切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關聯點”為P2,P3;(2)作正方形ABCD的內切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關聯點”,∴E在正方形ABCD的內切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關聯點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點睛】本題考查一次函數綜合題、正方形的性質、直線與圓的位置關系等知識,解題的關鍵是理解題意,學會尋找特殊位置解決數學問題,屬于中考壓軸題.21、甲、乙兩種節能燈分別購進40、60只;商場獲利1300元.【解析】

(1)利用節能燈數量和所用的價錢建立方程組即可;(2)每種燈的數量乘以每只燈的利潤,最后求出之和即可.【詳解】(1)設商場購進甲種節能燈x只,購進乙種節能燈y只,根據題意,得,解這個方程組,得

,答:甲、乙兩種節能燈分別購進40、60只.(2)商場獲利元,答:商場獲利1300元.【點睛】此題是二元一次方程組的應用,主要考查了列方程組解應用題的步驟和方法,利潤問題,解本題的關鍵是求出兩種節能燈的數量.22、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】

(1)根據3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應的方程組,從而可以解答本題;(2)①根據題意可以得到y與x的函數關系式;②根據①中的函數關系式和B型無人機的數量不少于A型無人機的數量的2倍,可以求得購進A型、B型無人機各多少臺,才能使總費用最少.【詳解】解:(1)設一臺型無人機售價元,一臺型無人機的售價元,,解得,,答:一臺型無人機售價元,一臺型無人機的售價元;(2)①由題意可得,即y與x的函數關系式為;②∵B型無人機的數量不少于A型無人機的數量的2倍,,解得,,,∴當時,y取得最小值,此時,答:購進型、型無人機各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應用、一次函數的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用一次函數的性質和方程的知識解答.23、(1)見解析;(2)①3;②1.【解析】

(1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;(2)①由含30°角的直角三角形的性質得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質即可得出DE;②由等腰三角形的性質,得到∠ODA=∠A=1°,于是∠DOC=90°然后根據有一組鄰邊相等的矩形是正方形,即可得到結論.【詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當∠B=1°時,四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.【點睛】本題考查了圓的切線性質、解直角三角形的知識、切線長定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.24、(1)證明見解析;(2)AB=【解析】

(1)證明:∵,DE⊥AC于點F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.連接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=25、3.05米【解析】

延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到正確結論.【詳解】解:如圖:延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan60°=1.5×1.73=2.595,∴GM=AB=2.595,在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,∴sin45°=,∴FG=1.76,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.【點睛】本題主要考查直角三角形和三角函數,構造合適的輔助線是本題解題的關鍵.26、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點Q的坐標為(-,)或(-,2)或(,2).【解析】

(1)將點B坐標代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據此證△OPE∽△FAE得===,即OP=FA,設點P(t,-2t-1),列出關于t的方程解之可得;(3)分點Q在AB上運動、點Q在BC上運動且Q在y軸左側、點Q在BC上運動且點Q在y軸右側這三種情況分類討論即可得.【詳解】解:(1)把點B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設直線AB表達式為y=kx+b,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論