




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知關于x的一元二次方程mx2+2x-1=0有兩個不相等的實數根,則m的取值范圍是().A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>12.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.3.在下列實數中,﹣3,,0,2,﹣1中,絕對值最小的數是()A.﹣3 B.0 C. D.﹣14.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.25.在數軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.6.有個零件(正方體中間挖去一個圓柱形孔)如圖放置,它的主視圖是A. B. C. D.7.把直線l:y=kx+b繞著原點旋轉180°,再向左平移1個單位長度后,經過點A(-2,0)和點B(0,4),則直線l的表達式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-28.計算3–(–9)的結果是()A.12 B.–12 C.6 D.–69.下列圖案是軸對稱圖形的是()A. B. C. D.10.衡陽市某生態示范園計劃種植一批梨樹,原計劃總產值30萬千克,為了滿足市場需求,現決定改良梨樹品種,改良后平均每畝產量是原來的1.5倍,總產量比原計劃增加了6萬千克,種植畝數減少了10畝,則原來平均每畝產量是多少萬千克?設原來平均每畝產量為萬千克,根據題意,列方程為A. B.C. D.11.如圖,點P是菱形ABCD邊上的一動點,它從點A出發沿在A→B→C→D路徑勻速運動到點D,設△PAD的面積為y,P點的運動時間為x,則y關于x的函數圖象大致為()A.B.C.D.12.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數和是()A.60° B.45° C.35° D.30°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實根,則實數k的取值范圍是_____.14.某市居民用電價格如表所示:用電量不超過a千瓦時超過a千瓦時的部分單價(元/千瓦時)0.50.6小芳家二月份用電200千瓦時,交電費105元,則a=______.15.在一個暗箱里放有a個除顏色外其他完全相同的球,這a個球中紅球只有3個.每次將球攪拌均勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復摸球試驗后發現,摸到紅球的頻率穩定在0.25,那么可以推算出a大約是_________.16.不等式組的最大整數解是__________.17.若a﹣3有平方根,則實數a的取值范圍是_____.18.若式子有意義,則x的取值范圍是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知一個二次函數的圖象經過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數解析式以及點C的坐標.20.(6分)已知函數的圖象與函數的圖象交于點.(1)若,求的值和點P的坐標;(2)當時,結合函數圖象,直接寫出實數的取值范圍.21.(6分)如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求證:四邊形ABCD是平行四邊形;(2)直接寫出圖中所有相等的線段(AE=CF除外).22.(8分)如圖,在四邊形ABCD中,點E是對角線BD上的一點,EA⊥AB,EC⊥BC,且EA=EC.求證:AD=CD.23.(8分)如圖,在平面直角坐標系xOy中,一次函數y=x與反比例函數的圖象相交于點.(1)求a、k的值;(2)直線x=b()分別與一次函數y=x、反比例函數的圖象相交于點M、N,當MN=2時,畫出示意圖并直接寫出b的值.24.(10分)如圖,在平面直角坐標系xOy中,函數y=kx(x<0)的圖象經過點A(-1,6),直線y=mx-2與x軸交于點B(①當n=-1時,判斷線段PD與PC的數量關系,并說明理由;②若PD≥2PC,結合函數的圖象,直接寫出n的取值范圍.25.(10分)下面是“作三角形一邊上的高”的尺規作圖過程.已知:△ABC.求作:△ABC的邊BC上的高AD.作法:如圖2,(1)分別以點B和點C為圓心,BA,CA為半徑作弧,兩弧相交于點E;(2)作直線AE交BC邊于點D.所以線段AD就是所求作的高.請回答:該尺規作圖的依據是______.26.(12分)如圖,已知二次函數與x軸交于A、B兩點,A在B左側,點C是點A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點P從O出發,以每秒2個單位的速度沿x軸負半軸方向運動,Q從O出發,以每秒個單位的速度沿OC方向運動,運動時間為t.直線PQ與拋物線的一個交點記為M,當2PM=QM時,求t的值(直接寫出結果,不需要寫過程)(2)過C作直線EF與拋物線交于E、F兩點(E、F在x軸下方),過E作EG⊥x軸于G,連CG,BF,求證:CG∥BF27.(12分)對于某一函數給出如下定義:若存在實數p,當其自變量的值為p時,其函數值等于p,則稱p為這個函數的不變值.在函數存在不變值時,該函數的最大不變值與最小不變值之差q稱為這個函數的不變長度.特別地,當函數只有一個不變值時,其不變長度q為零.例如:下圖中的函數有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G2,函數G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
∵一元二次方程mx2+2x-1=0有兩個不相等的實數根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故選A.【點睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當△=b2﹣4ac>0時,方程有兩個不相等的實數根;(2)當△=b2﹣4ac=0時,方程有有兩個相等的實數根;(3)當△=b2﹣4ac<0時,方程沒有實數根.2、B【解析】
延長AD交BC的延長線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點睛:本題考查的是解直角三角形的應用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數的定義是解題的關鍵.3、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數是0,故選:B.4、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點睛】本題考查了等邊三角形的性質和扇形的面積計算,能根據圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.5、A【解析】根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得不等式解集,然后得出在數軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.6、C【解析】
根據主視圖的定義判斷即可.【詳解】解:從正面看一個正方形被分成三部分,兩條分別是虛線,故正確.故選:.【點睛】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關鍵.7、B【解析】
先利用待定系數法求出直線AB的解析式,再求出將直線AB向右平移1個單位長度后得到的解析式,然后將所得解析式繞著原點旋轉180°即可得到直線l.【詳解】解:設直線AB的解析式為y=mx+n.∵A(?2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直線AB的解析式為y=2x+1.將直線AB向右平移1個單位長度后得到的解析式為y=2(x?1)+1,即y=2x+2,再將y=2x+2繞著原點旋轉180°后得到的解析式為?y=?2x+2,即y=2x?2,所以直線l的表達式是y=2x?2.故選:B.【點睛】本題考查了一次函數圖象平移問題,掌握解析式“左加右減”的規律以及關于原點對稱的規律是解題的關鍵.8、A【解析】
根據有理數的減法,即可解答.【詳解】故選A.【點睛】本題考查了有理數的減法,解決本題的關鍵是熟記減去一個數等于加上這個數的相反數.9、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.10、A【解析】
根據題意可得等量關系:原計劃種植的畝數改良后種植的畝數畝,根據等量關系列出方程即可.【詳解】設原計劃每畝平均產量萬千克,則改良后平均每畝產量為萬千克,根據題意列方程為:.故選:.【點睛】本題考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系.11、B【解析】【分析】設菱形的高為h,即是一個定值,再分點P在AB上,在BC上和在CD上三種情況,利用三角形的面積公式列式求出相應的函數關系式,然后選擇答案即可.【詳解】分三種情況:①當P在AB邊上時,如圖1,設菱形的高為h,y=12∵AP隨x的增大而增大,h不變,∴y隨x的增大而增大,故選項C不正確;②當P在邊BC上時,如圖2,y=12AD和h都不變,∴在這個過程中,y不變,故選項A不正確;③當P在邊CD上時,如圖3,y=12∵PD隨x的增大而減小,h不變,∴y隨x的增大而減小,∵P點從點A出發沿A→B→C→D路徑勻速運動到點D,∴P在三條線段上運動的時間相同,故選項D不正確,故選B.【點睛】本題考查了動點問題的函數圖象,菱形的性質,根據點P的位置的不同,運用分類討論思想,分三段求出△PAD的面積的表達式是解題的關鍵.12、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、k>【解析】
由方程根的情況,根據根的判別式可得到關于k的不等式,則可求得k的取值范圍.【詳解】∵關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案為k>.【點睛】本題主要考查根的判別式,熟練掌握一元二次方程根的個數與根的判別式的關系是解題的關鍵.14、150【解析】
根據題意可得等量關系:不超過a千瓦時的電費+超過a千瓦時的電費=105元;根據等量關系列出方程,解出a的值即可.【詳解】∵0.5×200=100<105,∴a<200.由題意得:0.5a+0.6(200-a)=105,解得:a=150.故答案為:150【點睛】此題主要考查了一元一次方程的應用,關鍵是正確找出題目中的等量關系,列出方程.15、12【解析】
在同樣條件下,大量反復試驗時,隨機事件發生的頻率逐漸穩定在概率附近,可以從比例關系入手,根據紅球的個數除以總數等于頻率,求解即可.【詳解】∵摸到紅球的頻率穩定在0.25,
∴解得:a=12故答案為:12【點睛】此題主要考查了利用頻率估計概率,解答此題的關鍵是利用紅球的個數除以總數等于頻率.16、【解析】
先求出每個不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數解.【詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數解為0,1,1,則該不等式組的最大整數解是x=1.故答案為:1.【點睛】考查不等式組的解法及整數解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.17、a≥1.【解析】
根據平方根的定義列出不等式計算即可.【詳解】根據題意,得解得:故答案為【點睛】考查平方根的定義,正數有兩個平方根,它們互為相反數,0的平方根是0,負數沒有平方根.18、且【解析】
∵式子在實數范圍內有意義,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案為x≥-1且x≠0.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、y=2x2+x﹣3,C點坐標為(﹣,0)或(2,7)【解析】
設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,進而求出點C的坐標即可.【詳解】設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴拋物線的解析式為y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C點坐標為(﹣,0)或(2,7).【點睛】本題考查了用待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.20、(1),,或;(2).【解析】【分析】(1)將P(m,n)代入y=kx,再結合m=2n即可求得k的值,聯立y=與y=kx組成方程組,解方程組即可求得點P的坐標;(2)畫出兩個函數的圖象,觀察函數的圖象即可得.【詳解】(1)∵函數的圖象交于點,∴n=mk,∵m=2n,∴n=2nk,∴k=,∴直線解析式為:y=x,解方程組,得,,∴交點P的坐標為:(,)或(-,-);(2)由題意畫出函數的圖象與函數的圖象如圖所示,∵函數的圖象與函數的交點P的坐標為(m,n),∴當k=1時,P的坐標為(1,1)或(-1,-1),此時|m|=|n|,當k>1時,結合圖象可知此時|m|<|n|,∴當時,≥1.【點睛】本題考查了反比例函數與正比例函數的交點,待定系數法等,運用數形結合思想解題是關鍵.21、(1)見解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整體分析:(1)用ASA證明△ADE≌△CBF,得到AD=BC,根據一組對邊平行且相等的四邊形是平行四邊形證明;(2)根據△ADE≌△CBF,和平行四邊形ABCD的性質及線段的和差關系找相等的線段.解:(1)證明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四邊形ABCD是平行四邊形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四邊形ABCD是平行四邊形,∴AB=DC.22、證明見解析【解析】
根據垂直的定義和直角三角形的全等判定,再利用全等三角形的性質解答即可.【詳解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB與Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD與△CBD中,∴△ABD≌△CBD,∴AD=CD.【點睛】本題考查了全等三角形的判定及性質,根據垂直的定義和直角三角形的全等判定是解題的關鍵.23、(1),k=2;(2)b=2或1.【解析】
(1)依據直線y=x與雙曲線(k≠0)相交于點,即可得到a、k的值;(2)分兩種情況:當直線x=b在點A的左側時,由x=2,可得x=1,即b=1;當直線x=b在點A的右側時,由x2,可得x=2,即b=2.【詳解】(1)∵直線y=x與雙曲線(k≠0)相交于點,∴,∴,∴,解得:k=2;(2)如圖所示:當直線x=b在點A的左側時,由x=2,可得:x=1,x=﹣2(舍去),即b=1;當直線x=b在點A的右側時,由x2,可得x=2,x=﹣1(舍去),即b=2;綜上所述:b=2或1.【點睛】本題考查了利用待定系數法求函數解析式以及函數的圖象與解析式的關系,解題時注意:點在圖象上,就一定滿足函數的解析式.24、(1)m=-2.(2)①判斷:PD=2PC.理由見解析;②-1≤n<0或n≤-3.【解析】
(1)利用代點法可以求出參數k,m;(2)①當n=-1時,即點P的坐標為(-1,2),即可求出點②根據①中的情況,可知n=-1或n=-3再結合圖像可以確定n的取值范圍;【詳解】解:(1)∵函數y=kx(x<0)的圖象G∴將點A(-1,6)代入y=∵直線y=mx-2與x軸交于點B(∴將點B(-1,0)代入y=mx-2(2)①判斷:PD=2PC.理由如下:當n=-1時,點P的坐標為(-1∴點C的坐標為(-2,∴PC=1,PD=2.∴PD=2PC.②由①可知當n=-1時PD=2PC所以由圖像可知,當直線y=-2n往下平移的時也符合題意,即0<-2n≤1,得-1≤n<0;當n=-3時,點P的坐標為(∴點C的坐標為(-4,∴PC=1,PD=2∴PD=2PC當-2n≥6時,即n≤-3,也符合題意,所以n的取值范圍為:-1≤n<0或n≤-3.【點睛】本題主要考查了反比例函數和一次函數,熟練求反比例函數和一次函數解析式的方法、坐標與線段長度的轉化和數形結合思想是解題關鍵.25、到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線【解析】
利用作法和線段垂直平分線定理的逆定理可得到BC垂直平分AE,然后根據三角形高的定義得到AD為高【詳解】解:由作法得BC垂直平分AE,所以該尺規作圖的依據為到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線.故答案為到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線.【點睛】此題考查三角形高的定義,解題的關鍵在于利用線段垂直平分線定理的逆定理求解.26、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見解析.【解析】
(1)把A(-3,0),B(-1,0)代入二次函數解析式即可求出;由AC=OA知C點坐標為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計算即可;(2)過F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數解析式得解得∴y=-x2-4x-3;由AC=OA知C點坐標為(-3,-3),∴直線OC的解析式y=x;②OP=2t,P(-2t,0),過Q作QH⊥x軸于H,∵QO=,∴OH=HQ=t,∴Q(-t,-t),∴PQ:y=-x-2t,過M作MG⊥x軸于G,∴,∴2PG=GH∴,即,∴,∴,∴M(-3t,t)或M()當M(-3t,t)時:,∴當M()時:,∴綜上:或(2)設A(m,0)、B(n,0),∴m、n為方程x2-bx-c=0的兩根,∴m+n=b,mn=-c,∴y=-x2+(m+n)x-mn=-(x-m)(x-n),∵E、F在拋物線上,設、,設EF:y=kx+b,∴,∴∴∴,令x=m∴=∴AC=,又∵,∴tan∠CAG=,另一方面:過F作FH⊥x軸于H,∴,,∴tan∠FBH=∴tan∠CAG=tan∠FBH∴∠CAG=∠FBH∴CG∥BF【點睛】此題主要考查二次函數的綜合問題,解題的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機電工程考試考點識別與試題及答案
- 項目管理中的敏捷方法介紹試題及答案
- 機電工程預算編制試題及答案
- 文化政策對社會發展的推動作用試題及答案
- 2025年北京昌平區興壽鎮招錄鄉村助理員筆試試卷
- 計算機軟件測試在政策評估中的角色試題及答案
- 預算編制與成本控制試題及答案
- 軟件設計師考試動向與試題及答案揭秘
- 2025年廢舊塑料回收處理技術革新與產業鏈協同發展研究報告
- 軟件設計與用戶體驗的融合及試題答案
- 農場轉讓合同協議書模板
- 2025-2030中國共享單車服務行業市場現狀供需分析及投資評估規劃分析研究報告
- 安徽省合肥一中2025屆高三最后一卷英語試題及答案
- 【MOOC】光學發展與人類文明-華南師范大學 中國大學慕課MOOC答案
- 國際私法(華東政法大學)智慧樹知到期末考試答案章節答案2024年華東政法大學
- HY∕T 0289-2020 海水淡化濃鹽水排放要求
- 高校基建管理部門組織構成及管理模式研究
- 特種設備檢驗流程圖
- 北京協和醫院食物交換表
- 成都市零診級高中畢業班摸底測試化學試題及答案
- 脫產學習證明
評論
0/150
提交評論